Thesis (MScEng)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: In this thesis the design, analysis, implementation, and verification of a fault-tolerant unmanned aerial
vehicle (UAV) flight control system which is robust to structural damage causing the natural flight dynamics
of the vehicle to become asymmetric, is presented.
The main purpose of the robust control architecture is to maintain flight stability after damage has occurred.
The control system must be able to handle an abrupt change from an undamaged to a damaged
state, and must also not depend on explicit knowledge of the damage. A robust control approach is therefore
preferred above an adaptive control approach. As a secondary objective, the system must provide
robust flight performance to ensure adequate response times and acceptable transients’ behaviour, both
in normal flight, and after damage has occurred.
An asymmetric six degrees of freedom equations of motion model is derived. The model accounts for
the changes in the aerodynamic model of the aircraft as well as changes in the centre of gravity location.
Vortex lattice techniques are used to determine the aerodynamic coefficients of the aircraft for damage
to the main wing resulting in 0% to 40% spanwise lifting surface loss. A sequential quadratic programming
optimisation algorithm is applied to the force and moment equations to find the trim flight state and
actuator deflections of the asymmetric aircraft for constant airspeed and altitude. The trim flight state
can be further constrained to force zero bank angle, zero sideslip angle or a desired relative weighting
of nonzero bank angle and nonzero sideslip angle. The calculated trim actuator deflections are compared
to the physical deflection limits to determine the feasibility of maintaining trim flight for different percentages
of wing loss. Assuming that a valid trim condition exists, the relative stability of the aircraft’s
natural modes is analysed as a function of percentage wing loss by tracing the locus of the open-loop poles.
An acceleration-based flight control architecture is designed and implemented, and the robustness of the
flight control stability and performance is analysed as a function of percentage wing loss. The robustness
and performance of the flight control system is verified with a nonlinear simulation for spanwise wing loss
from 0 to 40%.
Practical flight tests are performed to verify the robustness and performance of the flight control systems
to in-flight damage. A detachable wing with release mechanism is designed and manufactured to
simulate 20% wing loss. The flight control system is implemented on a practical UAV and a successful
flight test shows that it performs fully autonomous flight control, and is able to accommodate an in-flight
partial wing loss. / AFRIKAANSE OPSOMMING: In hierdie tesis word die ontwerp, analise, implementasie en verifikasie van ’n fout-verdraende onbemande
vliegtuig beheerstelsel wat robuust is tot strukturele skade wat die natuurlike vlug dinamika van die voertuig
asimmetries maak, voorgestel.
Die hoofdoel van hierdie robuuste beheer argitektuur is om stabiliteit te verseker na die skade aangerig
is. Die beheerstelsel moet die skielike verandering van normale na beskadigde vlug hanteer sonder
enige eksplisiete kennis daarvan. Dus word ’n robuuste beheer aanslag verkies bo ’n aanpassende beheer
struktuur. Tweedens moet die vlugbeheerstelsel robuust genoeg wees om steeds die gewenste reaksietyd
en aanvaarbare oorgangsverskynsels te kan hanteer, tydens beide normale en beskadigde vlug.
’n Asimmetriese ses grade van vryheid beweginsvergelykings model word afgelei. Die model het die
vermoë om veranderinge in die aerodinamiese model van die vliegtuig, sowel as massamiddelpunt verskuiwing,
voor te stel. “Vortex Lattice” metodes is gebruik om die aerodinamiese koëffisiënte van die
beskadigde vlerk voor te stel tussen 0% en 40% verlies. ’n Sekwensiële kwadratiese programmering optimiserings
algorithme is aangewend op die krag en moment vergelykings om die ekwilibrium vlug toestand
en aktueerder defleksies te vind vir ’n asimmetriese vliegtuig met konstante lugspoed en hoogte. Die
ekwilibrium vlug toestand word verder beperk deur ’n nul rolhoek, ’n nul sygliphoek of ’n relatiewe weging
van die twee. Die bepaalde ekwilibrium defleksies word dan vergelyk met die fisiese limiete om hulle
geldigheid te bepaal vir ekwilibrium vlug. As ’n geldige ekwilibrium toestand bestaan, kan die relatiewe
stabiliteit van die vliegtuig se natuurlike modusse ontleed word as ’n persentasie van vlerkverlies deur die
wortellokusse van die ooplus pole na te gaan.
’n Versnellings-gebaseerde vlug beheerstelsel argitektuur is ontwerp en geïmplementeer. Daarna is die
robuustheid ontleed as ’n funksie van die persentasie vlerkverlies. Die robuustheid en gedrag van hierdie
vlugbeheerstelsel is geverifieer met ’n nie-linêre simulasie vir 0 tot 40% vlerkverlies.
Praktiese vlugtoetse is onderneem om die robuustheid en gedrag tydens/na skade gedurende ’n vlug,
te verifeer. ’n Vlerkverlies meganisme is ontwerp en vervaardig om 20% vlerkverlies te simuleer. Die
vlugbeheerstelsel is geïmplementeer op ’n onbemande vliegtuig en die daaropvolgende suksesvolle vlug
lewer bewys dat die vlugbeheerstelsel wel skade, in die vorm van gedeeltelike vlerkverlies, tydens vlug kan hanteer.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/85625 |
Date | 12 1900 |
Creators | Beeton, Wiaan |
Contributors | Engelbrecht, J. A. A., Stellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering. |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Format | xviii, 151 p. : ill. |
Rights | Stellenbosch University |
Page generated in 0.0026 seconds