Return to search

The Role of Toll-Like Receptor Agonist Treatment on Salmonella Infection in Macrophages

Salmonella is a Gram-negative intracellular pathogen that causes gastroenteritis and
typhoid fever in humans. Salmonella can survive and replicate within host cells and has adapted several mechanisms to evade host immune defenses. The innate immune system plays an important role as a first-line of defense against pathogens such as Salmonella,
and is mediated in part by toll-like receptors (TLRs). TLRs recognize fundamental components of pathogenic microorganisms and activation of TLRs leads to downstream signaling cascades eventually resulting in the expression of pro-inflammatory cytokines (4) and also has a role in activating adaptive immunity through presentation of antigens to lymphocytes (86). There are several lines of evidence that suggest that TLR activation may have therapeutic potential in therapies against infectious disease and several TLR agonists have been shown to protect against both bacterial and viral infection in mice (7; 8; 38; 66; 75; 84; 89; 121). To understand how TLR-agonist treatment of host cells affects Salmonella pathogenesis, RAW 264.7 murine macrophages were treated with the TLR agonists liposaccharide (LPS), poly(I:C), peptidoglycan, and CpG-ODN. Treatment of macrophages with all TLR-agonists results in increased phagocytosis of Salmonella compared to control-treated macrophages. These increases in phagocytic activity, however, do not enhance macrophage anti-microbial activity, since Salmonella infection of TLR-treated macrophages results in increased intracellular replication compared to control-treated cells. Infection with Salmonella mutants indicates that increased intracellular replication of Salmonella in TLR-treated macrophages is dependent on a functional SPI-2 type III secretion system. This also indicates that there
was not a generalized defect in macrophage anti-bacterial function. These data exemplify
how interactions between macrophage defense mechanisms and bacterial virulence factors can result in evasion of the innate immune response. Studying how TLR-agonist treatment affects Salmonella pathogenesis will give us a better understanding of the host-pathogen relationship and may provide insight into novel strategies to fight intracellular microorganisms. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21626
Date09 1900
CreatorsWong, Christine Elizabeth
ContributorsCoombes, Brian K., Biochemistry and Biomedical Sciences
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds