[ES] La presente tesis doctoral realiza un análisis en detalle de los elementos de decisión necesarios para mejorar la comprensión de la situación en ciberdefensa con especial énfasis en la percepción y comprensión del analista de un centro de operaciones de ciberseguridad (SOC). Se proponen dos arquitecturas diferentes basadas en el análisis forense de flujos de datos (NF3). La primera arquitectura emplea técnicas de Ensemble Machine Learning mientras que la segunda es una variante de Machine Learning de mayor complejidad algorítmica (lambda-NF3) que ofrece un marco de defensa de mayor robustez frente a ataques adversarios. Ambas propuestas buscan automatizar de forma efectiva la detección de malware y su posterior gestión de incidentes mostrando unos resultados satisfactorios en aproximar lo que se ha denominado un SOC de próxima generación y de computación cognitiva (NGC2SOC). La supervisión y monitorización de eventos para la protección de las redes informáticas de una organización debe ir acompañada de técnicas de visualización. En este caso, la tesis aborda la generación de representaciones tridimensionales basadas en métricas orientadas a la misión y procedimientos que usan un sistema experto basado en lógica difusa. Precisamente, el estado del arte muestra serias deficiencias a la hora de implementar soluciones de ciberdefensa que reflejen la relevancia de la misión, los recursos y cometidos de una organización para una decisión mejor informada. El trabajo de investigación proporciona finalmente dos áreas claves para mejorar la toma de decisiones en ciberdefensa: un marco sólido y completo de verificación y validación para evaluar parámetros de soluciones y la elaboración de un conjunto de datos sintéticos que referencian unívocamente las fases de un ciberataque con los estándares Cyber Kill Chain y MITRE ATT & CK. / [CA] La present tesi doctoral realitza una anàlisi detalladament dels elements de decisió necessaris per a millorar la comprensió de la situació en ciberdefensa amb especial èmfasi en la percepció i comprensió de l'analista d'un centre d'operacions de ciberseguretat (SOC). Es proposen dues arquitectures diferents basades en l'anàlisi forense de fluxos de dades (NF3). La primera arquitectura empra tècniques de Ensemble Machine Learning mentre que la segona és una variant de Machine Learning de major complexitat algorítmica (lambda-NF3) que ofereix un marc de defensa de major robustesa enfront d'atacs adversaris. Totes dues propostes busquen automatitzar de manera efectiva la detecció de malware i la seua posterior gestió d'incidents mostrant uns resultats satisfactoris a aproximar el que s'ha denominat un SOC de pròxima generació i de computació cognitiva (NGC2SOC). La supervisió i monitoratge d'esdeveniments per a la protecció de les xarxes informàtiques d'una organització ha d'anar acompanyada de tècniques de visualització. En aquest cas, la tesi aborda la generació de representacions tridimensionals basades en mètriques orientades a la missió i procediments que usen un sistema expert basat en lògica difusa. Precisament, l'estat de l'art mostra serioses deficiències a l'hora d'implementar solucions de ciberdefensa que reflectisquen la rellevància de la missió, els recursos i comeses d'una organització per a una decisió més ben informada. El treball de recerca proporciona finalment dues àrees claus per a millorar la presa de decisions en ciberdefensa: un marc sòlid i complet de verificació i validació per a avaluar paràmetres de solucions i l'elaboració d'un conjunt de dades sintètiques que referencien unívocament les fases d'un ciberatac amb els estàndards Cyber Kill Chain i MITRE ATT & CK. / [EN] This doctoral thesis performs a detailed analysis of the decision elements necessary to improve the cyber defence situation awareness with a special emphasis on the perception and understanding of the analyst of a cybersecurity operations center (SOC). Two different architectures based on the network flow forensics of data streams (NF3) are proposed. The first architecture uses Ensemble Machine Learning techniques while the second is a variant of Machine Learning with greater algorithmic complexity (lambda-NF3) that offers a more robust defense framework against adversarial attacks. Both proposals seek to effectively automate the detection of malware and its subsequent incident management, showing satisfactory results in approximating what has been called a next generation cognitive computing SOC (NGC2SOC). The supervision and monitoring of events for the protection of an organisation's computer networks must be accompanied by visualisation techniques. In this case, the thesis addresses the representation of three-dimensional pictures based on mission oriented metrics and procedures that use an expert system based on fuzzy logic. Precisely, the state-of-the-art evidences serious deficiencies when it comes to implementing cyber defence solutions that consider the relevance of the mission, resources and tasks of an organisation for a better-informed decision. The research work finally provides two key areas to improve decision-making in cyber defence: a solid and complete verification and validation framework to evaluate solution parameters and the development of a synthetic dataset that univocally references the phases of a cyber-attack with the Cyber Kill Chain and MITRE ATT & CK standards. / Llopis Sánchez, S. (2023). Decision Support Elements and Enabling Techniques to Achieve a Cyber Defence Situational Awareness Capability [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194242
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/194242 |
Date | 15 June 2023 |
Creators | Llopis Sánchez, Salvador |
Contributors | Esteve Domingo, Manuel, Mees, Wim, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds