Return to search

A high-performance, multi-frequency micro-controlled Electrical Impedance Mammography (EIM) excitation and phantom validation system

The research concentrates on the design, development and calibration of a high performance Electrical Impedance Mammography (EIM) system for early detection of breast cancer at the macro and micro scale (at an early stage applicable for different breast sizes and shapes). The enhancement of the Electrical Impedance Tomography (EIT) system focuses on developing electrical and electronic instrumentations and improving the current source topologies to make them operate at multiple frequencies for the purpose of measuring permittivity and conductivity of different breast tissues. The calibration, assessment systems have employed current calibration in the EIT to evaluate the impedance distribution. This facilitates the acquisition of accurate impedance images to enable images of the internal structure of the breast to be constructed. A constraint on EIT systems is that the current injection system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIT is an ill-posed inverse problem which depends on the noise level in EIT measured data and regularization parameter in the reconstruction algorithm. This research aims are to prevent this problem by using a capacitance cancellation method based on a General Impedance Converter (GIC) implemented by operation of a second generation of current conveyor called OCCII-GIC and calibration methods to facilitate operation in the high frequency range. An EIT system based on a planar 85-electrode channel and using a Microcontroller unit (MCU) for addressing control between 85 electrodes and implementing calibration methods has been constructed. In EIT systems, assessment, validation of the performance and calibration of systematic errors in the electrical field generated inside of the interrogated volume is important. Evaluation of the EIT system will be assessed using a realistic electronic phantom (E-phantom). This enables the evaluation of the different conductivity values of the tissue, which has been created and evaluated based on the RSC circuit model for the different electrical conductivities and electrical impedivities in breast tissue.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:690447
Date January 2016
CreatorsZarafshani, Ali
PublisherUniversity of Sussex
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://sro.sussex.ac.uk/id/eprint/61524/

Page generated in 0.0017 seconds