Enhancing low light videos has been quite a challenge over the years. A video taken in low light always has the issues of low dynamic range and high noise. This master thesis presents contribution within the field of low light video enhancement. Three models are proposed with different tone mapping algorithms for extremely low light low quality video enhancement. For temporal noise removal, a motion compensated kalman structure is presented. Dynamic range of the low light video is stretched using three different methods. In Model 1, dynamic range is increased by adjustment of RGB histograms using gamma correction with a modified version of adaptive clipping thresholds. In Model 2, a shape preserving dynamic range stretch of the RGB histogram is applied using SMQT. In Model 3, contrast enhancement is done using CLAHE. In the final stage, the residual noise is removed using an efficient NLM. The performance of the models are compared on various Objective VQA metrics like NIQE, GCF and SSIM. To evaluate the actual performance of the models subjective tests are conducted, due to the large number of applications that target humans as the end user of the video.The performance of the three models are compared for a total of ten real time input videos taken in extremely low light environment. A total of 25 human observers subjectively evaluated the performance of the three models based on the parameters: contrast, visibility, visually pleasing, amount of noise and overall quality. A detailed statistical evaluation of the relative performance of the three models is also provided.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-13500 |
Date | January 2016 |
Creators | Dalasari, Venkata Gopi Krishna, Jayanty, Sri Krishna |
Publisher | Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds