High dynamic range (HDR) imaging is a rapidly growing field in computer graphics and image processing. It allows capture, storage, processing, and display of photographic information within a scene-referred framework. The HDR imaging pipeline consists of the major steps an HDR image is expected to go through from capture to display. It involves various techniques to create HDR images, pixel encodings and file formats for storage, tone mapping for display on conventional display devices and direct display on HDR capable screens. Each of these stages have important open problems, which need to be addressed for a smoother transition to an HDR imaging pipeline. We addressed some of these important problems such as noise reduction in HDR imagery, preservation of color appearance, validation of tone mapping operators, and image display on HDR monitors. The aim of this thesis is thus, to present our findings and describe the research we have conducted within the framework of optimizing the HDR imaging pipeline.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4054 |
Date | 01 January 2007 |
Creators | Akyuz, Ahmet Oguz |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0022 seconds