Tree series transformations computed by bottom-up and top-down tree series transducers are called bottom-up and top-down tree series transformations, respectively. (Functional) compositions of such transformations are investigated. It turns out that the class of bottomup tree series transformations over a commutative and complete semiring is closed under left-composition with linear bottom-up tree series transformations and right-composition with boolean deterministic bottom-up tree series transformations. Moreover, it is shown that the class of top-down tree series transformations over a commutative and complete semiring is closed under right-composition with linear, nondeleting top-down tree series transformations. Finally, the composition of a boolean, deterministic, total top-down tree series transformation with a linear top-down tree series transformation is shown to be a top-down tree series transformation.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:26216 |
Date | 12 November 2012 |
Creators | Maletti, Andreas |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:workingPaper, info:eu-repo/semantics/workingPaper, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa-79344, qucosa:24841 |
Page generated in 0.0024 seconds