Este trabalho de mestrado insere-se no contexto do projeto de uma Ferramenta Inteligente de Apoio à Pesquisa (FIP), sendo desenvolvida no Laboratório de Inteligência Computacional do ICMC-USP. A ferramenta foi proposta para recuperar, organizar e minerar grandes conjuntos de documentos científicos (na área de computação). Nesse contexto, faz-se necessário um repositório de artigos para a FIP. Ou seja, um Data Warehouse que armazene e integre todas as informações extraídas dos documentos recuperados de diferentes páginas pessoais, institucionais e de repositórios de artigos da Web. Para suportar o processamento analítico on-line (OLAP) das informações e facilitar a ?mineração? desses dados é importante que os dados estejam armazenados apropriadamente. Dessa forma, o trabalho de mestrado teve como objetivo principal projetar um Data Warehouse (DW) para a ferramenta FIP e, adicionalmente, realizar experimentos com técnicas de mineração e Aprendizado de Máquina para automatizar o processo de indexação das informações e documentos armazenados no data warehouse (descoberta de tópicos). Para as consultas multidimensionais foram construídos data marts de forma a permitir aos pesquisadores avaliar tendências e a evolução de tópicos de pesquisa / This dissertation is related to the project of an Intelligent Tool for Research Supporting (FIP), being developed at the Laboratory of Computational Intelligence at ICMC-USP. The tool was proposed to retrieve, organize, and mining large sets of scientific documents in the field of computer science. In this context, a repository of articles becomes necessary, i.e., a Data Warehouse that integrates and stores all extracted information from retrieved documents from different personal and institutional web pages, and from article repositories. Data appropriatelly stored is decisive for supporting online analytical processing (OLAP), and ?data mining? processes. Thus, the main goal of this MSc research was design the FIP Data Warehouse (DW). Additionally, we carried out experiments with Data Mining and Machine Learning techniques in order to automatize the process of indexing of information and documents stored in the data warehouse (Topic Detection). Data marts for multidimensional queries were designed in order to facilitate researchers evaluation of research topics trend and evolution
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13092007-094903 |
Date | 04 May 2007 |
Creators | Augusto Kanashiro |
Contributors | Alneu de Andrade Lopes, Mauro Biajiz, Solange Oliveira Rezende |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds