Return to search

Triple Non-negative Matrix Factorization Technique for Sentiment Analysis and Topic Modeling

Topic modeling refers to the process of algorithmically sorting documents into categories based on some common relationship between the documents. This common relationship between the documents is considered the “topic” of the documents. Sentiment analysis refers to the process of algorithmically sorting a document into a positive or negative category depending whether this document expresses a positive or negative opinion on its respective topic. In this paper, I consider the open problem of document classification into a topic category, as well as a sentiment category. This has a direct application to the retail industry where companies may want to scour the web in order to find documents (blogs, Amazon reviews, etc.) which both speak about their product, and give an opinion on their product (positive, negative or neutral). My solution to this problem uses a Non-negative Matrix Factorization (NMF) technique in order to determine the topic classifications of a document set, and further factors the matrix in order to discover the sentiment behind this category of product.

Identiferoai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:cmc_theses-2774
Date01 January 2017
CreatorsWaggoner, Alexander A
PublisherScholarship @ Claremont
Source SetsClaremont Colleges
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceCMC Senior Theses
Rights© 2017 Alex A Waggoner, default

Page generated in 0.0021 seconds