With the growth of the internet, data from text sources has become increasingly available to researchers in the form of online newspapers, journals, and blogs. This data presents a unique opportunity to analyze human opinions and behaviors without soliciting the public explicitly. In this research, I utilize newspaper articles and the social media service Twitter to infer self-reported public opinions and awareness of climate change. Climate change is one of the most important and heavily debated issues of our time, and analyzing large-scale text surrounding this issue reveals insights surrounding self-reported public opinion. First, I inquire about public discourse on both climate change and energy system vulnerability following two large hurricanes. I apply topic modeling techniques to a corpus of articles about each hurricane in order to determine how these topics were reported on in the post event news media. Next, I perform sentiment analysis on a large collection of data from Twitter using a previously developed tool called the "hedonometer". I use this sentiment scoring technique to investigate how the Twitter community reports feeling about climate change. Finally, I generalize the sentiment analysis technique to many other topics of global importance, and compare to more traditional public opinion polling methods. I determine that since traditional public opinion polls have limited reach and high associated costs, text data from Twitter may be the future of public opinion polling.
Identifer | oai:union.ndltd.org:uvm.edu/oai:scholarworks.uvm.edu:graddis-1619 |
Date | 01 January 2016 |
Creators | Cody, Emily |
Publisher | ScholarWorks @ UVM |
Source Sets | University of Vermont |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate College Dissertations and Theses |
Page generated in 0.0019 seconds