Return to search

Topology Optimization of 3D Printed Flexural Elements

abstract: Investigation into research literature was conducted in order to understand the impacts of traditional concrete construction and explore recent advancements in 3D printing technologies and methodologies. The research project focuses on the relationship between computer modeling, testing, and verification to reduce concrete usage in flexural elements. The project features small-scale and large-scale printing applications modelled by finite element analysis software and printed for laboratory testing. The laboratory testing included mortar cylinder testing, digital image correlation (DIC), and four pointbending tests. Results demonstrated comparable performance between casted, printed solid, and printed optimized flexural elements. Results additionally mimicked finite element models regarding failure regions. / Dissertation/Thesis / Masters Thesis Engineering 2020

Identiferoai:union.ndltd.org:asu.edu/item:63083
Date January 2020
ContributorsBjelland, Aidan D (Author), Neithalath, Narayanan (Advisor), Hoover, Christian (Committee member), Rajan, Subramaniam (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format73 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0016 seconds