Neste trabalho estudamos superfícies com a propriedade que suas componentes irredutíveis são superfícies tóricas. Em particular, apresentamos uma fórmula para calcular a obstrução de Euler local destas superfícies. Como uma aplicação desta fórmula, calculamos a obstrução de Euler local para algumas famílias de superfícies determinantais. Além disso, definimos a característica de Euler evanescente de uma superfície tórica normal Xσ, damos uma fórmula para calcular tal invariante e relacionamos este número com a segunda multiplicidade polar de Xσ. Apresentamos também, uma fórmula para a obstrução de Euler de uma função f : Xσ → C e para o número de Brasselet de tal função. Como uma aplicação deste resultado, calculamos a obstrução de Euler de um tipo de polinômio definido em uma família de superfícies determinantais. / In this work we study surfaces with the property that their irreducible components are toric surfaces. In particular, we present a formula to compute the local Euler obstruction of such surfaces. As an application of this formula we compute the local Euler obstruction for some families of determinantal surfaces. Furthermore, we define the vanishing Euler characteristic of a normal toric surface Xσ, we give a formula to compute it, and we relate this number with the second polar multiplicity of Xσ. We also present a formula for the Euler obstruction of a function f : Xσ → C and for the Brasselet number of it. As an application of this result we compute the Euler obstruction of a type of polynomial on a family of determinantal surfaces.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-18032015-111835 |
Date | 24 October 2014 |
Creators | Dalbelo, Thaís Maria |
Contributors | Grulha Junior, Nivaldo de Góes |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds