Return to search

SUPPRESSION OF HARMONIC TORQUE AND HARMONIC CURRENT IN PERMANENT MAGNET SYNCHRONOUS MOTOR

In this dissertation harmonic current, harmonic torque originated at the load and harmonic torque originated at the motor, where modeled and treated via closed loop control. The dissertation propose a remedy for cancelling harmonic current by placing the proposed adaptive feedforward controller (AFC) in parallel with the FOC current control. Similarly, harmonic torque load was cancelled by proposing an AFC in parallel with the speed control loop. Harmonic torque originated in the motor mainly due to harmonic flux where cancelled through the estimation of harmonic flux, which was achieved by a novel Minimal Parameter Harmonic Flux Estimator (MPHFE). The latter is formulated such that the inductance, resistance, and stator current and its derivative are not necessary for the estimation of the harmonic eflux. This was achieved by forcing the harmonic current induced by the harmonic flux component to zero through the combined action of a Field-Oriented Controller (FOC) and a feed-forward controller. Subsequently, the harmonic flux can be obtained directly from the estimated harmonic back-EMF without the involvement of other motor parameters. Finally, the estimated flux is used in conjunction with a comprehensive analysis of the motor harmonic torque to determine the stator current compensation to eliminate the torque harmonic. A systematic approach to assign the parameter of the AFC controller were developed in this dissertation. Furthermore, multiple experiments were conducted to demonstrate the efficacy of the proposed control schemes harmonics.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-2526
Date01 May 2018
CreatorsAbou Qamar, Nezar Yehya
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations

Page generated in 0.0019 seconds