De nos jours, le transport joue un rôle clé dans la vie des pays modernes, en particulier pour les flux de marchandises. La logistique des flux entre régions, pays et continents a bénéficié d’innovations technologiques et organisationnelles assurant efficacité et efficience. Il n’en a pas été de même à l’échelle urbaine, plus particulièrement dans les centres-villes : la gestion des flux dans un environnement caractérisé par une forte densité démographique n’a pas encore véritablement trouvé son modèle d’organisation. Aujourd’hui, la logistique urbaine ou encore la gestion "du dernier kilomètre" constitue donc un enjeu de premier plan, tant socio politique et environnemental qu’économique. La logistique urbaine est caractérisée par la présence de plusieurs acteurs (chargeurs ou propriétaires de marchandises, clients, transporteurs, autorités publiques, …) ayant chacun des priorités différentes (réduction de la pollution, amélioration de la qualité de service, minimisation de la distance totale parcourue, …). Pour relever ces défis, un des leviers possibles consiste à optimiser les tournées de distribution et/ou collecte de marchandises, dans le contexte et sous les contraintes de la ville.Le but de ce travail de thèse réside alors dans la planification de la distribution des marchandises dans un réseau logistique, abordée sous un angle de collaboration entre les chargeurs. Cette collaboration consiste à regrouper les demandes de divers chargeurs pour optimiser le taux de chargement des camions et obtenir de meilleurs prix de transport. Ici, la gestion du « dernier kilomètre » s’apparente à ce que l’on identifie dans la littérature comme le Pickup and Delivery Problem (PDP). Dans le cadre de cette thèse, nous nous intéressons à des variantes de ce problème plus adaptées au contexte urbain. Après avoir réalisé un état de l’art sur les problèmes d’optimisation combinatoire autour du transport et les méthodes utilisées pour leur résolution, nous étudions deux nouvelles variantes du problème de collecte et de livraison : le Selective PDP with Time Windows and Paired Demands et le Multi-periods PDP with Time Windows and Paired Demands. La première permet aux transporteurs de livrer le maximum de clients dans une journée par exemple ; avec la seconde, et en cas d’impossibilité de livraison dans cette période, on détermine la meilleure date de livraison en minimisant la distance parcourue. Chacune d’elles fait l’objet d’une description formelle, d’une modélisation mathématique sous forme de programme linéaire, puis d’une résolution par des méthodes exacte, heuristiques et métaheuristiques, dans des cas mono-objectif et multi-objectifs. La performance de chaque approche a été évaluée par un nombre substantiel de tests sur des instances de différentes tailles issues de la littérature et/ou que nous avons générées. Les avantages et les inconvénients de chaque approche sont analysés, notamment dans le cadre de la collaboration entre chargeurs. / Nowadays, transportation plays a key role in our modern countries’life, in particular for the goods flows. The logistics of flows between regions, countries and continents have benefited from technological and organizational innovations ensuring efficiency and effectiveness. It has not been the same at the urban scale, especially in city centers: the management of flows in a high population density environment has not yet found its organizational model. Today, urban logistics or "last mile" management is therefore a major issue, both socio-political and environmental as well as economic. Urban logistics is characterized by several actors (shippers or owners of goods, customers, carriers, public authorities, ...) each with different priorities (reduction of pollution, improvement of service quality, minimization of total distance traveled, ...). To overcome these challenges, one possible lever is to optimize the distribution and/or collection of goods in the context and under the constraints of the city.The goal of this PhD work is then to plan the distribution of goods in a logistics network, approached from a collaboration angle between shippers. This collaboration consists in grouping the demands of several shippers to optimize the loading rate of the trucks and to obtain better transport prices. Here, managing the "last mile" is similar to what is known in the literature as the Pickup and Delivery Problem (PDP). In this thesis, we are interested in variants of this problem more adapted to the urban context. After having realized a state of the art on the combinatorial optimization problems around the transport and the methods used for their resolution, we study two new variants of the problem of collection and delivery: the Selective PDP with Windows and Paired Demands and the Multi-period PDP with Windows and Paired Demands. The first allows carriers to deliver the maximum number of customers in a day for example; with the second, and in case of impossibility of delivery in this period, we determine the best delivery date by minimizing the distance traveled. Each of them is the subject of a formal description, of a mathematical modeling in the form of a linear program, then of a resolution by exact methods, heuristics and metaheuristics, in single-objective and multi-objective cases. The performance of each approach was evaluated by a substantial number of tests on instances of different sizes from the literature and / or that we generated. The advantages and drawbacks of each approach are analyzed, in particular in the context of collaboration between shippers.
Identifer | oai:union.ndltd.org:theses.fr/2018UBFCA016 |
Date | 18 July 2018 |
Creators | Al Chami, Zaher |
Contributors | Bourgogne Franche-Comté, Manier, Marie-Ange, Manier, Hervé |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds