A pose estimation method is proposed for measuring the position and orientation of a biopsy needle. The technique is to be used as a touchless needle guide system for guidance of percutaneous procedures with 4D ultrasound. A pair of uncalibrated, light-weight USB cameras are used as inputs. A database is prepared offline, using both the needle line estimated from camera-captured images and the true needle line recorded from an independent tracking device. A nonparametric learning algorithm determines the best fit model from the database. This model can then be used in real-time to estimate the true position of the needle with inputs from only the camera images. Simulation results confirm the feasibility of the method and show how a small, accurately made database can provide satisfactory results. In a series of tests with cameras, we achieved an average error of 2.4mm in position and 2.61° in orientation.
The system is also extended to real ultrasound imaging, as the two miniature cameras capture images of the needle in air and the ultrasound system captures a volume as the needle moves through the workspace. A new database is created with the estimated 3D position of the needle from the ultrasound volume and the 2D position and orientation of the needle calculated from the camera images. This study achieved an average error of 0.94 mm in position and 3.93° in orientation.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/2505 |
Date | 05 1900 |
Creators | Khosravi, Sara |
Publisher | University of British Columbia |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.002 seconds