This thesis contributes new algorithms and implementations for particle filter-based target tracking. From an algorithmic perspective, modifications that improve a batch-based acoustic direction-of-arrival (DOA), multi-target, particle filter tracker are presented. The main improvements are reduced execution time and increased robustness to target maneuvers. The key feature of the batch-based tracker is an image template-matching approach that handles data association and clutter in measurements. The particle filter tracker is compared to an extended Kalman filter~(EKF) and a Laplacian filter and is shown to perform better for maneuvering targets. Using an approach similar to the acoustic tracker, a radar range-only tracker is also developed. This includes developing the state update and observation models, and proving observability
for a batch of range measurements.
From an implementation perspective, this thesis provides new low-power and real-time implementations for particle filters. First, to achieve a very low-power implementation, two mixed-mode implementation strategies that use
analog and digital components are developed. The mixed-mode implementations use analog, multiple-input translinear element (MITE) networks to realize nonlinear functions. The power dissipated in the mixed-mode implementation of a particle filter-based, bearings-only tracker is compared to a digital implementation that uses the CORDIC algorithm to realize the nonlinear functions. The mixed-mode method that uses predominantly analog components is shown to provide a factor of twenty improvement in power savings compared to a digital implementation. Next, real-time implementation strategies for the batch-based acoustic DOA tracker are developed. The characteristics of the digital implementation of the tracker are quantified using digital signal processor (DSP) and field-programmable gate array (FPGA) implementations. The FPGA implementation uses a soft-core or hard-core processor to implement the Newton search in the particle proposal stage. A MITE implementation of the nonlinear DOA update function in the tracker is also presented.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/14611 |
Date | 03 April 2007 |
Creators | Velmurugan, Rajbabu |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0022 seconds