Chronic non-communicable diseses are a global public health challenge that continuously threatens the development and health of humans. Risk factors such as unbalanced diet-the high consumption of processed food or food from animal origin are responsible for NCDs. NCDs result in weakened immune system, making the host susceptible to opportunistic infections. Thus, the NCDs burden is most times chronic and multiple with the illness and suffering of the affected person numerous. The lack of cure for NCDs, the high cost of drugs, their high side-effects, and the emergence of multiple drug resistance has given rise to the investigation of other sources for therapeutic cure such as medicinal plants. The ethanol, n-hexane and ethyl acetate extracts of Olea europaea were analysed for their antioxidant and antimicrobial activities. The essential oil was also analysed for their chemical constituents. The n-hexane extracts of O. europaea exhibited no inhibition against all of the microorganisms tested, while the ethyl acetate and ethanol extracts exhibited inhibition, with minimum inhibitory concentration values between 0.625 mg/ml to 1.25 mg/ml. The ethanol leaf and ethyl acetate stem extracts exhibited significant activity in the inhibition of 2, 2-azinobis-(3-ethylbenzothiazolin - 6-sulfonic acid diammonium salt (ABTS) free radical, the n-hexane leaf extract had the overall significant lipid peroxidation inhibition activity, while in the inhibition of 2, 2- diphenyl-1-picrylhydrazyl radical (DPPH), the ethanol and ethyl acetate leaf extracts had strong activity. Nonanal, phytol, α-Pinene, α-Phellandrene, spatulenol and farnesol were some of chemical components identified after the GC-MS analysis of O. europaea oil. In the final part of the dissertation, Euryops brevipapposus essential oil was assessed for the antioxidant activities using free radical scavenging assays. In addition to this, the antimicrobial activities were assessed and the chemical composition was analysed using GC-MS. The essential oil demonstrated significant antioxidant activity against 2, 2-diphenyl-2-picryl-hydrazyl free radical (DPPH), 2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and lipid peroxides with IC50 value of 0.0000000671 mg/ml, 1.05 mg/ml, and 1.170 mg/ml respectively. The essential oil also showed significant activity against all microorganisms tested with minimum inhibitory concentration (MIC) values between 0.055 mg/ml to 0.5 mg/ml. α-pinene, α- Phellandrene, germacrene D, β-pinene, trans- β.-Ocimene, bicyclogermacrene and β -Phellandrene were some of the chemical compounds identified in E. brevipapposus oil. The study has shown that E. brevipapposus and O. europaea are abundant in phytochemical compounds which were thought to be the root cause for the activities demonstrated. Therefore, these therapeutic properties observed validate and elucidate the traditional usage of the both plants in the treatment /management of diseases.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ufh/vital:28624 |
Date | January 2016 |
Creators | Adegborioye, Abiodun |
Publisher | University of Fort Hare, Faculty of Science & Agriculture |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MSc |
Format | 118 leaves, pdf |
Rights | University of Fort Hare |
Page generated in 0.0021 seconds