In today’s scenario, energy efficiency has become one of the most crucial issues for Data Center Networks (DCN). This paper analyses the energy saving capability of a Data center network using Segment Routing (SR) based model within a Software Defined Network (SDN) architecture. Energy efficiency is measured in terms of number of links turned off and for how long the links remain in sleep mode. Apart from saving the energy by turning off links, our work further efficiently manages the traffic within the available links by using Per-packet based load balancing approach. Aiming to avoid congestion within DCN’s and increase the sleeping time of inactive links. An algorithm for deciding the particular set of links to be turned off within a network is presented. With the introduction of per-packet approach within SR/SDN model, we have successfully saved 21 % of energy within DCN topology. Results show that the proposed Per-packet SR model using Random Packet Spraying (RPS) saves more energy and provides better performance as compared to Per-flow based SR model, which uses Equal Cost Multiple Path (ECMP) for load balancing. But, certain problems also come into picture using per-packet approach, like out of order packets and longer end to end delay. To further solidify the effect of SR in saving energy within DCN and avoid previously introduced problems, we have used per-flow based Flow Reservation approach along with a proposed Flow Scheduling Algorithm. Flow rate of all incoming flows can be deduced using Flow reservation approach, which is further used by Flow Scheduling Algorithm to increase Bandwidth utilization Ratio of links. Ultimately, managing the traffic more efficiently and increasing the sleeping time of links, leading to more energy savings. Results show that, the energy savings are almost similar in per-packet based approach and per-flow based approach with bandwidth reservation. Except, the average sleeping time of links in per-flow based approach with bandwidth reservation decreases less severely as compared to per-packet based approach, as overall traffic load increases.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/35846 |
Date | January 2017 |
Creators | Ghuman, Karanjot Singh |
Contributors | Nayak, Amiya |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds