Ce travail porte sur le développement d'un code numérique tridimensionnel pour la simulation d'entrées en tunnels de trains à grande vitesse en vue de proposer des solutions afin de réduire les nuisances occasionnées. L'écoulement de l'air est modélisé par les équations d'Euler instationnaires. Ces équations sont discrétisées à l'aide d'une formulation en volumes finis et résolues grâce à un schéma solveur de Riemann approché, d'ordre supérieur, particulièrement adapté à la propagation d'ondes. Pour gérer le mouvement relatif du train par rapport au tunnel, une méthode de maillage glissant est utilisée avec un traitement conservatif des faces aux niveaux des jonctions de maillages. Le domaine est ainsi décomposé en plusieurs sous-domaines, maillés indépendamment avec un mailleur cartésien automatique basé sur un maillage surfacique triangulaire. Pour réduire le domaine, et donc le temps de calcul, et accélérer la stabilisation de l'écoulement avant l'entrée du train, des conditions aux limites non réflectives sont implémentées. La méthodologie est validée sur plusieurs cas tests. Une étude paramétrique de l'influence d'un auvent à l'entrée du tunnel sur le gradient de l'onde de compression pression initiale est effectuée. Les paramètres de cette étude sont la forme, la longueur et la section de l'auvent. Enfin, l'effet d'ouvertures dans l'auvent est simulé.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00650463 |
Date | 08 December 2010 |
Creators | Uystepruyst, David |
Publisher | Université de Valenciennes et du Hainaut-Cambresis |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds