La présente thèse propose un algorithme de segmentation de bas niveau pour des environnements complexes, allant de scènes intérieures peuplées aux scènes extérieures dynamiques. Basé sur des méthodes d'apprentissage développées pour une séquence vidéo où la caméra est fixe, le système est en mesure d'identifier les sections de l'image appartenant aux objets ou personnes d'avant-plan et ce, en dépit de perturbations temporelles de l'image de l'arrière-plan causées par les ombres, éléments naturels, changements d'illumination, etc. Nous proposons un cadre statistique d'estimation de densité de probabilité basé sur des kernels (KDE). Méthode polyvalente, les KDE requièrent toutefois des séquences d'entraînement où l'activité de l'avant-plan est minimale afin d'obtenir une bonne description initiale de la distribution de l'arrière-plan. Afin d'augmenter la flexibilité de ce type d'approche, nous exploitons la cohérence spatiale des événements d'avant-plan : en minimisant une fonction d'énergie globale par coupure de graphe, nous estimons les probabilités à priori et les densités associées à l'avant et l'arrière-plan pour chaque pixel de la scène. Pour y arriver, des indices tels la dispersion des données, la probabilité associée aux modes dans l'espace RGB, la persistance spatiale des événements et l'entropie relative des régions dans l'image sont utilisés dans un cadre statistique cohérent. Les ombres projetées qui sont détectées lors du processus de soustraction d'arrière-plan induisent des perturbations, tels la distorsion et la fusion des silhouettes, qui nuisent à la performance générale d'algorithmes de plus haut niveau dans un contexte de surveillance vidéo. Deux stratégies sont alors proposées afin de d'éliminer l'ombre projetée de la région d'intérêt. La première méthode utilise la capacité d'apprentissage de l'algorithme de Mixtures de Gaussiennes (GMM) dans le but de caractériser le comportement des ombres projetées sur les surfaces composant l'arrière-plan. La deuxième méthode s'appuie sur les propriétés physiques de l'ombre projetée et d'une mesure de gradient dans un cadre statistique non paramétrique afin d'estimer les valeurs d'atténuation des surfaces ombragées. La méthode permet la différenciation des ombres et de l'avant-plan lorsque ceux-ci partagent des valeurs de chromaticité similaire. Les résultats démontrent que notre approche est efficace dans une multitude de scénarios complexes.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/23597 |
Date | 18 April 2018 |
Creators | Martel-Brisson, Nicolas |
Contributors | Zaccarin, André |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | xiv, 156 p., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0024 seconds