Return to search

Graph-based variational optimization and applications in computer vision

Many computer vision applications such as image filtering, segmentation and stereovision can be formulated as optimization problems. Recently discrete, convex, globally optimal methods have received a lot of attention. Many graph-based methods suffer from metrication artefacts, segmented contours are blocky in areas where contour information is lacking. In the first part of this work, we develop a discrete yet isotropic energy minimization formulation for the continuous maximum flow problem that prevents metrication errors. This new convex formulation leads us to a provably globally optimal solution. The employed interior point method can optimize the problem faster than the existing continuous methods. The energy formulation is then adapted and extended to multi-label problems, and shows improvements over existing methods. Fast parallel proximal optimization tools have been tested and adapted for the optimization of this problem. In the second part of this work, we introduce a framework that generalizes several state-of-the-art graph-based segmentation algorithms, namely graph cuts, random walker, shortest paths, and watershed. This generalization allowed us to exhibit a new case, for which we developed a globally optimal optimization method, named "Power watershed''. Our proposed power watershed algorithm computes a unique global solution to multi labeling problems, and is very fast. We further generalize and extend the framework to applications beyond image segmentation, for example image filtering optimizing an L0 norm energy, stereovision and fast and smooth surface reconstruction from a noisy cloud of 3D points

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00666878
Date10 October 2011
CreatorsCouprie, Camille
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0017 seconds