Return to search

From specialists to generalists : inductive biases of deep learning for higher level cognition

Les réseaux de neurones actuels obtiennent des résultats de pointe dans une gamme de domaines problématiques difficiles.
Avec suffisamment de données et de calculs, les réseaux de neurones actuels peuvent obtenir des résultats de niveau humain sur presque toutes les tâches. En ce sens, nous avons pu former des spécialistes capables d'effectuer très bien une tâche particulière, que ce soit le jeu de Go, jouer à des jeux Atari, manipuler le cube Rubik, mettre des légendes sur des images ou dessiner des images avec des légendes. Le prochain défi pour l'IA est de concevoir des méthodes pour former des généralistes qui, lorsqu'ils sont exposés à plusieurs tâches pendant l'entraînement, peuvent s'adapter rapidement à de nouvelles tâches inconnues. Sans aucune hypothèse sur la distribution génératrice de données, il peut ne pas être possible d'obtenir une meilleure généralisation et une meilleure adaptation à de nouvelles tâches (inconnues).

Les réseaux de neurones actuels obtiennent des résultats de pointe dans une gamme de domaines problématiques difficiles.
Une possibilité fascinante est que l'intelligence humaine et animale puisse être expliquée par quelques principes, plutôt qu'une encyclopédie de faits. Si tel était le cas, nous pourrions plus facilement à la fois comprendre notre propre intelligence et construire des machines intelligentes. Tout comme en physique, les principes eux-mêmes ne suffiraient pas à prédire le comportement de systèmes complexes comme le cerveau, et des calculs importants pourraient être nécessaires pour simuler l'intelligence humaine. De plus, nous savons que les vrais cerveaux intègrent des connaissances a priori détaillées spécifiques à une tâche qui ne pourraient pas tenir dans une courte liste de principes simples. Nous pensons donc que cette courte liste explique plutôt la capacité des cerveaux à apprendre et à s'adapter efficacement à de nouveaux environnements, ce qui est une grande partie de ce dont nous avons besoin pour l'IA. Si cette hypothèse de simplicité des principes était correcte, cela suggérerait que l'étude du type de biais inductifs (une autre façon de penser aux principes de conception et aux a priori, dans le cas des systèmes d'apprentissage) que les humains et les animaux exploitent pourrait aider à la fois à clarifier ces principes et à fournir source d'inspiration pour la recherche en IA.

L'apprentissage en profondeur exploite déjà plusieurs biais inductifs clés, et mon travail envisage une liste plus large, en se concentrant sur ceux qui concernent principalement le traitement cognitif de niveau supérieur. Mon travail se concentre sur la conception de tels modèles en y incorporant des hypothèses fortes mais générales (biais inductifs) qui permettent un raisonnement de haut niveau sur la structure du monde. Ce programme de recherche est à la fois ambitieux et pratique, produisant des algorithmes concrets ainsi qu'une vision cohérente pour une recherche à long terme vers la généralisation dans un monde complexe et changeant. / Current neural networks achieve state-of-the-art results across a range of challenging problem domains.
Given enough data, and computation, current neural networks can achieve human-level results on mostly any task. In the sense, that we have been able to train \textit{specialists} that can perform a particular task really well whether it's the game of GO, playing Atari games, Rubik's cube manipulation, image caption or drawing images given captions. The next challenge for AI is to devise methods to train \textit{generalists} that when exposed to multiple tasks during training can quickly adapt to new unknown tasks. Without any assumptions about the data generating distribution it may not be possible to achieve better generalization and adaption to new (unknown) tasks.

A fascinating possibility is that human and animal intelligence could be explained by a few principles (rather than an encyclopedia). If that was the case, we could more easily both understand our own intelligence and build intelligent machines. Just like in physics, the principles themselves would not be sufficient to predict the behavior of complex systems like brains, and substantial computation might be needed to simulate human intelligence. In addition, we know that real brains incorporate some detailed task-specific a priori knowledge which could not fit in a short list of simple principles. So we think of that short list rather as explaining the ability of brains to learn and adapt efficiently to new environments, which is a great part of what we need for AI. If that simplicity of principles hypothesis was correct it would suggest that studying the kind of inductive biases (another way to think about principles of design and priors, in the case of learning systems) that humans and animals exploit could help both clarify these principles and provide inspiration for AI research.


Deep learning already exploits several key inductive biases, and my work considers a larger list, focusing on those which concern mostly higher-level cognitive processing. My work focuses on designing such models by incorporating in them strong but general assumptions (inductive biases) that enable high-level reasoning about the structure of the world. This research program is both ambitious and practical, yielding concrete algorithms as well as a cohesive vision for long-term research towards generalization in a complex and changing world.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/28129
Date10 1900
CreatorsGoyal, Anirudh
ContributorsBengio, Yoshua
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0029 seconds