Return to search

Décodage de l'expression de gènes cryptiques

Pour certaines espèces, les nouvelles technologies de séquençage à haut débit et les pipelines automatiques d'annotation permettent actuellement de passer du tube Eppendorf au fichier genbank en un clic de souris, ou presque. D'autres organismes, en revanche, résistent farouchement au bio-informaticien le plus acharné en leur opposant une complexité génomique confondante. Les diplonémides en font partie. Ma thèse est centrée sur la découverte de nouvelles stratégies d'encryptage de l'information génétique chez ces eucaryotes, et l'identification des processus moléculaires de décodage.
Les diplonémides sont des protistes marins qui prospèrent à travers tous les océans de la planète. Ils se distinguent par une diversité d'espèces riche et inattendue. Mais la caractéristique la plus fascinante de ce groupe est leur génome mitochondrial en morceaux dont les gènes sont encryptés. Ils sont décodés au niveau ARN par trois processus: (i) l'épissage en trans, (ii) l'édition par polyuridylation à la jonction des fragments de gènes, et (iii) l'édition par substitution de A-vers-I et C-vers-T; une diversité de processus posttranscriptionnels exceptionnelle dans les mitochondries.
Par des méthodes bio-informatiques, j'ai reconstitué complètement le transcriptome mitochondrial à partir de données de séquences ARN à haut débit. Nous avons ainsi découvert six nouveaux gènes dont l'un présente des isoformes par épissage alternatif en trans, 216 positions éditées par polyuridylation sur 14 gènes (jusqu'à 29 uridines par position) et 114 positions éditées par déamination de A-vers-I et C-vers-T sur sept gènes (nad4, nad7, rns, y1, y2, y3, y5).
Afin d'identifier les composants de la machinerie réalisant la maturation des ARNs mitochondriaux, le génome nucléaire a été séquencé, puis je l'ai assemblé et annoté. Cette machinerie est probablement singulière et complexe car aucun signal en cis ni acteur en trans caractéristiques des machineries d'épissage connues n'a été trouvé. J'ai identifié plusieurs candidats prometteurs qui devront être validés expérimentalement: des ARN ligases, un nombre important de protéines de la famille des PPR impliquées dans l'édition des ARNs dans les organites de plantes, ainsi que plusieurs déaminases.
Durant ma thèse, nous avons mis en évidence de nouveaux types de maturation posttranscriptionnelle des ARNs dans la mitochondrie des diplonémides et identifié des candidats prometteurs de la machinerie. Ces composants, capables de lier précisément des fragments d'ARN et de les éditer pourraient trouver des applications biotechnologique. Au niveau évolutif, la caractérisation de nouvelles excentricités moléculaires de ce type nous donne une idée des processus de recrutement de gènes, de leur adaptation à de nouvelles fonctions, et de la mise en place de machineries moléculaires complexes. / Thanks to new high throughput sequencing technologies and automatic annotation pipelines, proceeding from an eppendorf tube to a genbank file can be achieved in a single mouse click or so, for some species. Others, however, fiercely resist bioinformaticians with their confounding genomic complexity. Diplonemids are one of them. My thesis is centered on the discovery of new strategies for encrypting genetic information in eukaryotes, and the identification of molecular decoding processes.
Diplonemids are a group of poorly studied marine protists. Unexpectedly, metagenomic studies have recently ranked this group as one of the most diverse in the oceans. Yet, their most distinctive feature is their multipartite mitochondrial genome with genes in pieces, and encryption by nucleotide deletions and substitutions. Genes are decrypted at the RNA level through three processes: (i) trans-splicing, (ii) polyuridylation at the junction of gene pieces and (iii) substitutions of A-to-I and C-to-T. Such a diverse arsenal of mitochondrial post-transcriptional processes is highly exceptional.
Using a bioinformatics approach, I have reconstructed the mitochondrial transcriptome from RNA-seq libraries. We have identified six new genes including one that presents alternative trans-splicing isoforms. In total, there are 216 uridines added in 14 genes with up to 29 U insertions, and 114 positions edited by deamination (A-to-I or C-to-T) among seven genes (nad4, nad7, rns, y1, y2, y3, y5).
In order to identify the machinery that processes mitochondrial RNAs, the nuclear genome has been sequenced. I have then assembled and annotated the genome. This machinery is probably unique and complex because no cis signal or trans actor typical for known splicing machineries have been found. I have identified promising protein candidates that are worth to be tested experimentally, notably RNA ligases, numerous members of the PPR family involved in plants RNA editing and deaminases.
During my thesis, we have identified new types of post-transcriptional RNA processing in diplonemid mitochondria and identified new promising candidates for the machinery. A system capable of joining precisely or editing RNAs could find biotechnological applications. From an evolutionary perspective, the discovery of new molecular systems gives insight into the process of gene recruitment, adaptation to new functions and establishment of complex molecular machineries.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/18548
Date08 1900
CreatorsMoreira, Sandrine
ContributorsBurger, Gertraud, Turcotte, Marcel
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0029 seconds