Return to search

The functional dissection of motion processing pathways in the human visual cortex using fMRI-guided TMS

Motion-selectivity in human visual cortex comprises a number of different cortical loci including V1, V2, V3A, V3B, hV5/MT+ and V6 (Wandell et al., 2007). This thesis sought to investigate the specific functions of V3A and sub-divisions of hV5/MT+ (TO-1 and TO-2) by using transcranial magnetic stimulation (TMS) to transiently disrupt cortical activations within these areas during psychophysical tasks of motion perception. The tasks were chosen to coincide with previous non-human primate and human neuroimaging literature; translational, radial and rotational direction discrimination tasks and identification of the position of a focus of expansion. These results assert that TO-1 and TO-2 are functionally distinct subdivisions of hV5/MT+, as we have shown that both TO-1 and TO-2 are responsible for processing translational motion direction whilst only TO-2 is responsible for processing radial motion direction. In ipsilateral space, it was found that TO-1 and TO-2 both contribute to the processing of ipsilateral translational motion. Taken in a wider context, further results also suggested that these areas may form part of a network of cortical areas contributing to perception of self-motion (heading/egomotion), as TO-2 was not found to be responsible for processing the position of the central focus of expansion (imperative for self-direction). Instead, area V3A has been implicated as functionally responsible for processing this attribute of vision. Overall it is clear that TO-1, TO-2 and V3A have specific, distinct functions that contribute towards both parallel and serial motion processing pathways within the human brain.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:732136
Date January 2015
CreatorsStrong, Samantha Louise
PublisherUniversity of Bradford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10454/14426

Page generated in 0.0018 seconds