The oocyte-to-zygote transition represents the only physiological event in mammalian life cycle, during which a differentiated cell is reprogrammed to become pluripotent. For its most part, the reprogramming relies on the accurate post-transcriptional control of maternally deposited mRNAs. Therefore, understanding the mechanisms of post-transcriptional regulation in the oocyte will help improve our knowledge of cell reprogramming. Short non- coding microRNAs have recently emerged as an important class of post-transcriptional regulators in a wide range of cellular and developmental processes. MicroRNAs repress their mRNA targets via recruitment of deadenylation and decapping complexes, which typically accumulate in cytoplasmic Processing bodies (P-bodies). The presented work uncovers an unexpected feature of the microRNA pathway which is found to be suppressed in fully-grown mouse oocytes and through the entire process of oocyte-to-zygote transition. This finding is consistent with the observation that microRNA-related P-bodies disassemble early during oocyte growth and are absent in fully-grown oocytes. Some of the proteins normally associated with P-bodies localize to the oocyte cortex. At the final stage of oocyte growth, these proteins, together with other RNA-binding factors, form subcortical...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:308512 |
Date | January 2012 |
Creators | Flemr, Matyáš |
Contributors | Svoboda, Petr, Motlík, Jan, Hampl, Aleš |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds