Transcriptional regulation refers to the molecular systems that control the concentration of mRNA species within the cell. Variation in these controlling systems is not only responsible for many diseases, but also contributes to the vast phenotypic diversity in the biological world. There are powerful experimental approaches to probe these regulatory systems, and the focus of my doctoral research has been to develop and apply effective computational methods that exploit these rich data sets more completely. First, I present a method for mapping genetic regulators of gene expression (expression quantitative trait loci, or eQTL) using Random Forests. This approach allows for flexible modeling and feature selection, and results in eQTL that are more biologically supportable than those mapped with competing methods. Next, I present a method that finds interactions between genes that in turn regulate the expression of other genes. This is accomplished by finding recurring decision motifs in the forest structure that represent dependencies between genetic loci. Third, I present a method to use distributional differences in eQTL data to establish the regulatory roles of genes relative to other disease-associated genes. Using this method, we found that genes that are master regulators of other disease genes are more likely to be consistently associated with the disease in genetic association studies. Finally, I present a novel application of Random Forests to determine the mode of regulation of toxin-perturbed genes, using time-resolved gene expression. The results demonstrate a novel approach to supervised weighted clustering of gene expression data.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25475 |
Date | 20 December 2010 |
Creators | Michaelson, Jacob |
Contributors | Beyer, Andreas, Schroeder, Michael, Selbig, Joachim, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0012 seconds