RAG1-/- mutant zebrafish lack T and B lymphocytes. However, when re-exposed to homologous bacteria, these fish mount a response that provides specific protection. To further define this response, we utilized microarray analyses to determine the mechanisms underlying innate immune system memory in zebrafish. We also analyzed interferon (IFN) gamma by qRT-PCR. It is produced by activated NK cells and could indicate if this cell mediates the protective response seen in lymphocyte deficient zebrafish. Pathological studies and in situ hybridizations were performed to observe tissue changes and location of the cells that produced IFN gamma. Following bacterial re-exposure, zebrafish transcripts in cell receptor activation, cell proliferation and cytotoxic function categories were differentially expressed. We found high expression of IFN gamma in the lymphocyte like cell population after bacterial exposure and this was induced to a higher level in fish that had been vaccinated. The phagocytic cell population showed no induction of INF gamma. Over-all, the pathological response was much less severe in the vaccinated (48 hps) fish. Our microarray and pathological findings indicate that the primary immune response of mutant zebrafish is not impaired, and they demonstrate an enhanced innate immune response following secondary bacteria exposure. Following homologous secondary exposure, mutant zebrafish have a cell population that is undergoing upregulated cell receptor activation, cell cytotoxic functions and cell proliferation. This cell population expresses INF gamma. Activated T cells, NK-T cells and NK cells express INF gamma. Since RAG1 deficient zebrafish do not have T or NK-T cells, this cell population is most likely NK cells.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5769 |
Date | 17 August 2013 |
Creators | Krishnavajhala, Aparna |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0017 seconds