In this thesis we will introduce multioperator weighted monadic datalog (mwmd), a formal model for specifying tree series, tree transformations, and tree languages. This model combines aspects of multioperator weighted tree automata (wmta), weighted monadic datalog (wmd), and monadic datalog tree transducers (mdtt). In order to develop a rich theory we will define multiple versions of semantics for mwmd and compare their expressiveness. We will study normal forms and decidability results of mwmd and show (by employing particular semantic domains) that the theory of mwmd subsumes the theory of both wmd and mdtt. We conclude this thesis by showing that mwmd even contain wmta as a syntactic subclass and present results concerning this subclass.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-68116 |
Date | 06 May 2011 |
Creators | Stüber, Torsten |
Contributors | Technische Universität Dresden, Fakultät Informatik, Prof. Dr.-Ing. habil. Heiko Vogler, Prof. Dr.-Ing. habil. Heiko Vogler, Dr. Zoltán Fülöp |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0022 seconds