O sucesso de tratamento de câncer depende do seu diagnóstico e tratamento nas etapas iniciais da doença. Isso estimula a busca de novos métodos de diagnóstico e de tratamento sensíveis e tecnicamente simples. Entre esses métodos, o diagnóstico por fluorescência (DPF) e a fotoquimioterapia (FQT) atraem uma atenção especial, sendo não invasivos, sensíveis e fácil de usar. Os fotossensibilizadores (FS) atualmente utilizados em DPF e FQT são corantes orgânicos, os quais possuem algumas desvantagens, tais como instabilidade fotoquímica e baixa seletividade. Os pontos quânticos (PQ) são candidatos promissores para substituírem os FS clássicos por serem fotoestáveis, apresentarem amplo e intenso espectro de absorção óptica e luminescência com alto rendimento quântico. Contudo a iteração entre FS clássicos e os PQ pode aumentar a eficiência de ambos devido a transferência de energia entre eles. O objetivo geral deste trabalho foi estudar os processos da interação de FS orgânicos (as porfirinas PPh, TMPyP e TPPS4) com PQs (CdTe e CdSe/ZnS), funcionalizados com diferentes grupos, em solução aquosa e na presença de modelos nano-organizados de estruturas biológicas com a finalidade de avaliar seu potencial para aplicação em Fotoquimioterapia e Diagnóstico por Fluorescência. Dedicamos especial atenção aos processos de transferência de energia e de carga entre os PQs e os FS. Os PQs interagem efetivamente com as PPh, cuja interação se manifesta pelas mudanças da intensidade e do perfil dos espectros e das curvas de decaimento da luminescência de PQ e da porfirina, do tamanho das partículas espalhadoras na solução, do potencial zeta dentre outros parâmetros espectroscópicos e físico-químicos. Dentro das soluções aquosas homogêneas, o PQ e as PPh podem formar agregados mistos (PQ&PPh&PQ) ou simples (PQ&PPh) e a interação entre eles realiza-se através de mecanismos de curto e/ou longo alcance, dependendo do grupo funcional do PQ. Entretanto, a interação eletrostática repulsiva entre o PQ e outro composto pode estimular a desagregação dos PQs induzindo o aumento na intensidade da sua luminescência e do seu tempo de vida, provocando um aumento na contribuição dos tempos longos do decaimento da luminescência associados com a superfície do PQ. Essas relações entre o tipo de interação do PQ e da PPh podem ser extrapoladas aos sistemas que contêm PQ na presença de estruturas nano-organizadas. / The success of cancer treatment depends on the diagnosis and treatment in the early stages of the disease. This stimulates the research for new methods of sensitive diagnosis and technically simple treatment. Among these methods, the Optical Bioimaging by fluorescence (OBI) and Photochemotherapy (PCT) attract special attention, being non-invasive, sensitive and friendly use. The photosensitizers (PS) currently used in the OBI-PCT are organic dyes, which have some drawbacks such as photochemical instability and low selectivity. Quantum Dots (QD) are promising candidates to replace the classic PS being photostable, present broad and intensive spectrum of optical absorption and luminescence and, high quantum yield. Therefore the interaction between QDPS and the classic PS can increase the efficiency of both due to energy transfer between them. The aim of this work was to study the processes of organic PS interaction (porphyrins PPh, TMPyP and TPPS4) with QDs (CdTe and CdSe/ZnS), functionalized with different groups in aqueous solution and in the presence of nano-organized models of biological structures with order to evaluate its potential for use in Photochemotherapy and Optical Bioimaging. We devote special attention to energy transfer processes and cargo between the QDs and PS. The QDs effectively interact with PPh, whose interaction is manifested by changes in the intensity and profile of spectra and luminescence decay curves of QD and the porphyrin, the linear size of the scattering particles in the solution, the zeta potential among other spectroscopic and physical chemistry parameters. Within the homogeneous aqueous solutions, QD and Pph can form mixed aggregates (QD&PPh&QD) or simple (QD&PPh) and the interaction between them is carried out through short mechanisms and/or long range, depending on the functional group of the QD. However, the repulsive electrostatic interaction between the QD and another compound may stimulate the breakdown of QDs inducing the increase in the intensity of their luminescence and its lifetime, causing an increase in the contribution of long time decay of the luminescence associated with the surface of QD. These relationships between the type of interaction of the QD and PPh can be extrapolated to systems containing QD in the presence of nano-organized structures.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07042015-114512 |
Date | 19 January 2015 |
Creators | Gustavo Gimenez Parra |
Contributors | Iouri Borissevitch, Luciano Bachmann, Luciano Caseli, Amando Siuiti Ito, Sonia Renaux Wanderley Louro |
Publisher | Universidade de São Paulo, Física Aplicada à Medicina e Biologia, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds