Transformer-based architectures have in recent years advanced state-of-the-art performance in Natural Language Processing. Researchers have successfully adapted such models to downstream tasks within NLP in a domain-specific setting. This thesis examines the application of these models to the legal domain by doing Named Entity Recognition (NER) in a setting of scarce training data. Three different pre-trained BERT models are fine-tuned on a set of 101 court case documents, whereof one model is pre-trained on legal corpora and the other two on general corpora. Experiments are run to evaluate the models’ predictive performance given smaller or larger quantities of data to fine-tune on. Results show that BERT models work reasonably well for NER with legal data. Unlike many other domain-specific BERT models, the BERT model trained on legal corpora does not outperform the base models. Modest amounts of annotated data seem sufficient for reasonably good performance.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-447240 |
Date | January 2021 |
Creators | Andersson-Säll, Tim |
Publisher | Uppsala universitet, Statistiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds