Return to search

Zkoumání úlohy univerzálního sémantického značkování pomocí neuronových sítí, řešením jiných úloh a vícejazyčným učením / Zkoumání úlohy univerzálního sémantického značkování pomocí neuronových sítí, řešením jiných úloh a vícejazyčným učením

July 19, 2018 In this thesis we present an investigation of multi-task and transfer learning using the recently introduced task of semantic tagging. First we employ a number of natural language processing tasks as auxiliaries for semantic tag- ging. Secondly, going in the other direction, we employ seman- tic tagging as an auxiliary task for three di erent NLP tasks: Part-of-Speech Tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where neg- ative transfer between tasks is less likely. Fi- nally, we investigate multi-lingual learning framed as a special case of multi-task learning. Our ndings show considerable improvements for most experiments, demonstrating a variety of cases where multi-task and transfer learning methods are bene cial. 1 References 2

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:387848
Date January 2018
CreatorsAbdou, Mostafa
ContributorsVidová Hladká, Barbora, Libovický, Jindřich
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0026 seconds