Return to search

Couplage d'un contacteur membranaire à extraction liquide-liquide avec un biorécteur pour la production de molécules hydrophobes par voie biotechnologique

Le travail présenté porte sur le couplage d’un procédé membranaire à extraction liquide-liquide avec un bioréacteur impliquant des molécules hydrophobes. La bioconversion modèle utilisée est la production de cis-2-methyl-5-isopropylhexa-2,5-dienal (isonovalal) à partir d’α-pinène oxyde, instable en phase aqueuse, par des cellules entières perméabilisées de Pseudomonas rhodesiae (CIP 107491). La production d’isonovalal en milieu biphasique eau (tampon phosphate)/hexadécane présente des verrous technologiques importants, dont une inactivation de l'enzyme à l'interface eau-solvant organique ainsi que l'apparition d'une émulsion stable. L’intérêt de la membrane porte sur l'absence de formation d'émulsion et sur l’augmentation de la durée de vie du biocatalyseur en raison de l'absence de contact direct du biocatalyseur avec l'interface liquide-liquide. La nature de la membrane a été choisie à partir de l'analyse des propriétés physico-chimiques du matériau et de l’étude des affinités entre membrane et composés d’intérêt (solutés, solvants). Il a été montré que les conditions d'écoulement au voisinage de la membrane, notamment du côté aqueux, jouent un rôle prépondérant sur les vitesses de transfert. Ce résultat souligne l'importance du design et des conditions d'opération du module membranaire sur les capacités de transfert. Le couplage de l’extraction membranaire liquide-liquide et de la réaction biologique a conduit à la mise en place d’un système bi-membranaire. Le prototype développé a permis de doubler les capacités catalytiques (+ 100 % d’isonovalal par gramme de biomasse) ainsi que de la durée de vie du biocatalyseur (160 h contre 80 h) par rapport à la même bioconversion réalisée en système biphasique conventionnel. / The study deals with the combination of a membrane process based on liquid/liquid extraction with a bioreactor producing hydrophobic molecules. The bioconversion used is the production of cis-2-methyl-5-isopropylhexa-2,5-dienal (isonovalal) from α-pinene oxide (unstable in aqueous phase) by whole cells of Pseudomonas rhodesiae (CIP 107491). The production of isonovalal in two-phase medium water/organic is known about but presents important technological brakes. Membrane interest concerns the stabilization of liquid/liquid interface and capacity to increase the biocatalyst life-time. Membrane nature is chosen from the analysis of physical and chemical properties of membrane material and study of the affinities between membrane and interest compounds (solutes, solvents). Two membrane contactors are designed and implemented on laboratory scale to study transfers between liquid phases. It is shown that the hydrodynamic conditions in the membrane neighborhood, in particular on aqueous side, play a major role on transfer speeds. This result underlines the importance of design and operation conditions in membrane module about the transfer capacities. The combination of liquid/liquid membrane extraction and biological reaction with unstable substrate had been studied and lead to the implementation of a serial bi-membrane system. The developed prototype, equipped with a PTFE membrane (polytetrafluoroethylene) with 0.22 μm pores’ diameter, highlights a doubling of catalytic capacities (+ 100 % of isonovalal per gram of biomass) as well as biocatalyst life-time (160 hours against 80 hours) compared with the same bioconversion realized in conventional two-phase medium system.

Identiferoai:union.ndltd.org:theses.fr/2013CLF22353
Date23 May 2013
CreatorsRossignol, Cindie
ContributorsClermont-Ferrand 2, Larroche, Christian
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds