Neste trabalho, discutem-se aspectos das transformações conformes na eletrodinâmica clássica com ênfase na invariância e nas leis de conservação. Inicialmente, abordaram-se aspectos gerais das transformações conformes e fez-se um resumo histórico da evolução dessas transformações. Procurou-se fazer uma apresentação didática, revisando-se a formulação Lagrangiana e o Teorema de Noether para campos aplicado à eletrodinâmica. Estudaram-se as transformações conformes no espaço plano, onde se mostrou que para dimensões maiores ou iguais a três o número de transformações é finito. A partir das equações de Maxwell em coordenadas curvilíneas, chegou-se à condição para que essas equações mantivessem sua forma cartesiana. Com essa condição, mostrou-se que a eletrodinâmica clássica é invariante para o grupo de transformações conformes. Foram discutidas as leis de conservação associadas à invariância conforme da eletrodinâmica clássica a partir do teorema de Noether. Das simetrias por translações no espaço-tempo, obtiveram-se as leis de conservação do momento linear e da energia. Das simetrias associadas às rotações, obtiveram-se seis quantidades conservadas: três delas ligadas à conservação do momento angular e, com relação às três restantes, observou-se, a partir de analogias com a mecânica, que estavam associadas ao movimento do centro de energia do campo. Para a interpretação da grandeza conservada por simetria de escala, verificou-se, também a partir de uma analogia mecânica, que essa simetria somente é verificada para partículas não massivas ou para partículas massivas a altas energias. Finalmente, para as transformações conformes especiais, verificou-se que as leis de conservação resultantes são consequências das leis anteriores de conservação para o campo eletromagnético, e neste caso, essa simetria também somente se manifesta para partículas de massa nula ou para altas energias. / In this work, aspects of conformal transformations in classical electrodynamics are discussed with emphasis on the invariance and conservation laws. Initially, a general view of conformal transformations was shown and a summary of the historical evolution of those transformations was presented. The work was approached didactically, and Noethers theorem based on the electrodynamics Lagrangian formulation was revised. The conformal transformations were studied in plane spaces and it was shown that, for dimensions greater than or equal to three, the number of transformations is finite. Starting from Maxwells equations in curvilinear coordinates, a condition for maintaining those equations in Cartesian form was established. With that condition, it was shown that the classical electrodynamics laws are invariant for the group of conformal transformations. The conservation laws associated with the conformal invariance of classical electrodynamics were discussed, based on Noethers theorem. From the space-time translation symmetry, the laws of conservation of linear momentum and of energy were obtained. From rotational symmetry, six conserved quantities were obtained: three of them associated with angular momentum and the remaining three, observed, starting from analogies with mechanics, were associated with the movement of the center of energy of the field. For the interpretation of the quantity conserved by scale symmetry, it was verified, also from a mechanical analogy, that that symmetry is only valid for null mass particles or for high energies. Finally, for the special conformal transformations, it was verified that the resultant laws of conservation are consequences of the previous laws, and in that case, symmetry is also valid only for particles of null mass or for high energies.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-26092014-000351 |
Date | 21 August 2013 |
Creators | Santos, Vaguiner Rodrigues dos |
Contributors | Silva, Ruy Pepe da |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0126 seconds