El problema a estudiar está relacionado con la generalización de las equivalencias bajo Ω-transformaciones de conexiones afines sobre una variedad M. Dos .conexiones \7 y \7 son equivalentes bajo Ω transformaciones, si para cada par de campos vectoriales (X, Y), se tiene: Y'xY- Y'xY = Ω(X)Y (1) La generalización consistirá en estudiar (1) con combinaciones lineales de las Ω-transformaciones, establecer propiedades relacionadas con los conceptos de curvatura y torsión de cada conexión \7 y \7. Se considerará en el lado derecho de la igualdad (1), el campo vectorial; C(X, Y) = αΩ(X)Y + βΩ(Y)X, donde α,β ϵ C∞(M) y Ω ϵ /\ (M). Finalmente, se establece que en una variedad M sólo pueden existir dos conexiones (bajo la condición de que Ω es exacta): la de Lyra y la de Riemann.
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:123456789/95263 |
Date | 25 September 2017 |
Creators | Martínez, Rodrigo, Salazar, Manuel |
Publisher | Pontificia Universidad Católica del Perú |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Español |
Detected Language | Spanish |
Type | Artículo |
Format | |
Source | Pro Mathematica; Vol. 15, Núm. 29-30 (2001); 121-133 |
Rights | Artículo en acceso abierto, Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0013 seconds