Return to search

Magnetizing Currents in Power Transformers : Measurements, Simulations, and Diagnostic Methods

This thesis demonstrates a method for transformer core diagnostics. The method uses the no-load current of the transformer as an indicator, and gives different characteristic signatures for different types of faults or defects. Using the no-load current for the diagnostic gives high sensitivity. The method is therefore able to detect defects that are too small to have an impact on the losses. In addition to different types of fault, the method can in some cases also distinguish between faults in different locations within the core. Both single-phase and three-phase transformers can be diagnosed using this method, and the measurements can be easily performed at any facility capable of measuring the no-load loss. There are, however, some phenomena that occur in large transformers, and in transformers with high rated voltages. Examples include capacitive resonance and magnetic remanence. This thesis proposes and demonstrates techniques for compensating for these phenomena. With these compensating techniques, the repeatability of the measurements is high. It is shown that units with the same core steel tend to have very similar no-load behavior. The diagnostics can then be performed either by comparing the transformer to another unit, or to simulations. The thesis presents one possible simulation method, and demonstrates the agreement with measurements. This topological simulation method includes both the electric circuit and an accurate model of the magnetic hysteresis. It is therefore also suitable for other, related, studies in addition to core diagnostics. Possible subjects include ferroresonance, inrush, DC magnetization of transformers, and transformer core optimization. The thesis also demonstrates that, for three-phase transformers, it is possible to compare the phases to each other. This technique makes it possible to diagnose a transformer even without a previous measurement to compare to, and without the data required to make a simulation. / <p>QC 20170607</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-208422
Date January 2017
CreatorsCarrander, Claes
PublisherKTH, Elektroteknisk teori och konstruktion, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EE, 1653-5146 ; 2017:042

Page generated in 0.0021 seconds