Return to search

Investigation of Coherent Vibrational Signatures with Impulsive Transient Absorption Spectroscopy

In Chapter 1, we present the background for transient absorption spectroscopy through the polarization response of a material to an electric field which gives rise to linear and non-linear processes. We then discuss a theoretical description of how vibrational coherences are formed via four-wave mixing and impulsive excitation. We also describe signatures of coherent wavepackets in transient absorption and the application of vibrational coherences, specifically to observe non-radiative processes. We then summarize two previous studies using impulsive transient absorption on cresyl violet, the differences in the coherent dynamics reported, and the motivations behind the experiments presented in this work. Chapter 2 pertains to the apparatus used to perform the transient absorption experiments. We detail the source for the generation of ultrashort laser pulses (durations of less than 10 fs) used for the pump and probe from an argon-based white-light filament and non-colinear optical parametric amplifier. Two-dimensional shearing interferometry, the method used to measure the ultrashort pulses across a large portion of the visible spectrum (500-750 nm), is discussed. The retrieved temporal, spectral, and phase profiles of the pump and probe pulses are presented. Finally, the sample preparation for cresyl violet is described as well as the detection method and data processing used to generate the figures throughout this work.
In Chapter 3, we present the results of impulsive transient absorption spectroscopy of cresyl violet perchlorate under four pump conditions. First, we report a study on controlling the formation of vibrational coherences on the ground or excited electronic states of cresyl violet by tuning the pump conditions from an off-resonant to a resonant scheme. The decay of the electronic population and positions of the stimulated emission and excited-state absorption maximums shows a dependence on the pump wavelength. Higher excitation frequencies blueshifts the stimulated emission 18 meV and red shifts excited-state absorption by 4 meV at early times compared to only 13 meV and 2 meV when using lower excitation frequencies. Coherent vibrations are observed and persist for approximately 6 ps after excitation, with phase flips appearing at 593 nm, the absorption maximum, after off-resonant excitation and at the emission (619 nm) and excited-state absorption (500 nm) maximums after resonant excitation. The ground- and excited-state vibrational modes are characterized by Fourier transform Raman spectroscopy. The excited-state vibration spectrum is shown to share nearly identical features as the ground-state, with each vibration slightly red-shifted, 2-10 cm-1, from the corresponding mode in the ground-state, particularly a prominent peak appearing at 594 cm-1 in the ground-state and 589 cm-1 in the excited-state. Next, two additional pump conditions using broadband and partially resonant pump pulses are explored to replicate the conflicting reports of non-adiabatic crossings in cresyl violet. Constant phase-flips observed in the control studies are replaced with phase flips that appear and disappear over several picoseconds. The Fourier Raman spectrum of the coherent signal after broadband excitation displays a mix of ground- and excited-state features, particularly prominent peaks at both 589 cm-1 and 594 cm-1.
In Chapter 4, we analyze the coherent signals after broadband excitation using a Fourier filtering technique to isolate the ground- or excited-state coherent dynamics by carefully selecting representative vibrational modes for each state. Using a narrow filter to isolate the 589 cm-1 and 595 cm-1 features in the broadband Fourier Raman spectrum successfully isolates coherent vibrations with phase flips at either the emission and excited-state absorption maximums or the ground-state absorption maximum, respectively. A filter that includes both features generates apparent phase-flips that only appear for ~1ps and at probe wavelengths that do not correspond to the emission or absorption maximums.
In Chapter 5, we present a simulation of the coherent signals using a model of two wavepackets with carrier frequencies of 589 cm-1 and 595 cm-1 and dephasing rates of 2 and 3 ps, respectively. Comparison to the broadband pump conditions and Fourier filtered coherent oscillations shows that the complex temporal dynamics observed are adequately described by the linear interference of two vibrational coherences evolving on different electronic potential energy surfaces, without the need to invoke non-adiabatic dynamics. / Chemistry

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/7217
Date January 2021
CreatorsFitzpatrick, Colin, 0000-0003-3422-2894
ContributorsLevis, Robert J., Willets, Katherine A., Zdilla, Michael J., 1978-, Lyyra, A. Marjatta
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format104 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/7196, Theses and Dissertations

Page generated in 0.0047 seconds