Developing and improving upon a good empirical model for an engine can be time-consuming and costly. The goal of this thesis has been to evaluate data-driven modelling, specifically neural networks, to see how well it can handle training for some static models like the mass flow of air into the cylinder, mean effective pressure and pump mean effective pressure but also for transient modelling, specifically the exhaust gas temperature. These models are evaluated against the classical empirical models to see if neural networks are a viable modelling option. This is done with five different types of neural networks which are trained. These are the feed-forward neural network, Nonlinear autoregressive exogenous model network, layer recurrent network, long short term memory network and gated recurrent network.The inputs were determined by looking at more simple physical models but also looking at the covariance to determine the usefulness of the input. If the calculation time is small for the specific network, the neural network structure is tested and optimized by training many networks and finding the median/mean result for that specific test.The result has shown that the static models are handled very well by the most simple feed-forward network. For the exhaust temperature, both NARX and Layer recurrent network could predict and handle it well giving results very close to the empirical models and could be a viable option for transient modelling, on the other hand, Long short term memory, gated recurrent network and the feed-forward network had trouble predicting the exhaust gas temperature and returned bad results while training.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-189837 |
Date | January 2022 |
Creators | Nibras, Musa, Linus, Roos |
Publisher | Linköpings universitet, Fordonssystem, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0039 seconds