Return to search

NMR Study of the Reorientational and Exchange Dynamics of Organometallic Complexes

Investigations presented here are (a) the study of reorientational dynamics and internal rotation in transition metal complexes by NMR relaxation experiments, and (b) the study of ligand exchange dynamics in transition metal complexes by exchange NMR experiments.
The phenyl ring rotation in Ru3(CO)9(μ3-CO)(μ3-NPh) and Re(Co)2(CO)10(μ3- CPh) was monitored by 13C NMR relaxation experiments to probe intramolecular electronic and/or steric interactions. It was found that the rotation is relatively free in the first complex, but is restrained in the second one. The steric interactions in the complexes were ascertained by the measurement of the closest approach intramolecular distances. The rotational energy barriers in the two complexes were also calculated by using both the Extended Hiickel and Fenske-Hall methods. The study suggests that the barrier is due mainly to the steric interactions.
The exchange NMR study revealed two carbonyl exchange processes in both Ru3(CO)9(μ3-CO)(μ3-NPh) and Ru3(CO)8(PPh3)(μ3-CO)(μ3-NPh). The lower energy process is a tripodal rotation of the terminal carbonyls. The higher energy process, resulting in the exchange between the equatorial and bridging carbonyls, but not between the axial and bridging carbonyls, involves the concerted formation of edge-bridging μ2-CO moieties. The effect of the PPh3 ligand on the carbonyl exchange rates has been discussed.
A combination of relaxation and exchange NMR found that PPh3 ligand rotation about the Ru-P bond is slow on the exchange NMR time scale and the phenyl rotation about the P-Cipso bond is fast on the exchange NMR time scale but is slow on the NMR relaxation time scale.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc278073
Date05 1900
CreatorsWang, Dongqing
ContributorsSchwartz, Martin, Thomas, Ruthanne D., Marshall, Paul, 1960-, Acree, William E. (William Eugene), Roberts, James Andrew
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatviii, 123 leaves: ill., Text
RightsPublic, Copyright, Copyright is held by the author, unless otherwise noted. All rights reserved., Wang, Dongqing

Page generated in 0.0024 seconds