La transition laminaire-turbulent au sein de la couche limite qui se développesur les parois des aéronefs augmente fortement la traînée de frottement. Ainsi, afin derépondre à une problématique à la fois environnementale et économique, une piste envisagéepour réduire la consommation en carburant des aéronefs du futur est de diminuerla trainée en reculant cette transition le plus en aval possible. Dans ce cadre, l’objectifde cette thèse est de caractériser expérimentalement et numériquement l’effet d’actionneursà plasma de type Décharge à Barrière Diélectrique sur la transition. Alimentés parune haute tension alternative, ces actionneurs actifs produisent une force volumique pulséequi permet, sous certaines conditions, de modifier les profils de vitesse moyenne dansla couche limite et de reculer la transition. Sous d’autres conditions, le caractère instationnairede cette force volumique peut entrainer une amplification des instabilités modalesnaturellement présentes dans la couche limite (ondes de Tollmien-Schlichting) et ainsiconduire à une transition prématurée. Une première expérience a permis de mettre enévidence cette compétition entre l’effet moyen stabilisant et l’effet instationnaire déstabilisanten mesurant respectivement un recul et une avancée de la transition. Parallèlementà ces activités expérimentales, une étude numérique, basée sur des analyses destabilité linéaire, a montré que l’effet moyen de la force volumique permettait d’atténuerune large gamme de fréquences d’ondes TS dans la couche limite et d’expliquer le reculde transition observé expérimentalement. En se concentrant sur l’effet moyen, une secondeexpérience a permis d’étudier l’influence de la position de l’actionneur ainsi quel’effet cumulatif de plusieurs actionneurs sur le recul de transition. / The boundary layer transition from a laminar to a turbulent state increases thewall friction drag. Particularly on future aircrafts, one way of reducing fuel consumption,and answering both an environmental and economic issue, consists in delaying the transitionfarther downstream. In this context, the aim of this work is to characterize the impactof Dielectric Barrier discharge (DBD) plasma actuators on the boundary layer transition.When powered with an alternative high voltage, these active actuators produce apulsed body force which is tangential to the wall and, under some conditions, enablesto modify the boundary layer mean velocity profiles to delay the transition. Under otherconditions, the unsteady body force amplifies modal instabilities (Tollmien-Schlichtingwaves) may destabilize the boundary layers, leading to a promoted transition. A first experimentenabled to highlight this competition between the stabilizing mean effect andthe destabilizing unsteady effect by measuring respectively a transition delay and a transitionpromotion. A numerical study based on local stability analyses wass conducted inparallel and showed that a wide frequency range of TS waves is damped by the mean bodyforce, which explains the transition delay. A second experiment, focusing on the mean effect,enabled to show the influence of the actuator position and the cumulative effect ofseveral actuators on the transition delay.
Identifer | oai:union.ndltd.org:theses.fr/2016ESAE0032 |
Date | 30 November 2016 |
Creators | Szulga, Natacha |
Contributors | Toulouse, ISAE, Forte, Maxime, Casalis, Grégoire |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds