Return to search

Carbon Supported Platinum-palladium Catalysts For Methanol And Ethanol Oxidation Reactions

In this work, two groups of carbon supported Pt-Pd catalysts have been prepared in order to investigate the effect of Pd, as a second metal, and surfactants on the catalytic activity towards methanol and ethanol oxidation reactions used in the direct methanol and ethanol fuel cells. In the first group (group a), 1- hexanethiol was used as a stabilizing agent while in the second group (group b), 1,1 dimethyl hexanethiol was utilized. Cyclic voltammetry (CV), chronoamperometry (CA), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used in order to determine the nature of the catalysts.

The average crystalline size of the metal particles in the catalysts was explored by XRD and TEM. TEM results revealed the uniform distribution of the metal nanoparticles on carbon support with a narrow size distribution in the range of 3.0 to 3.7 nm and the average crystalline sizes of metal particles for group &ldquo / b&rdquo / catalysts were larger than that of group &ldquo / a&rdquo / catalysts which can be explained by the surfactant effect. These results were in good agreement with XRD data.

The oxidation states of platinum (Pt(0) and Pt(IV)) and palladium (Pd(0) and Pd(II)) and their ratios were investigated by XPS and for the most active catalyst, catalyst Ib, these ratios were found to be as 6.94 and 13.7, respectively.

Electrochemical activities of the catalysts towards methanol and ethanol oxidation reactions were recorded and compared with that of Pt/C and the commercial Pt (ETEK 20 %wt) catalysts. The results indicated that the group &lsquo / b&rsquo / catalyst has greater catalytic activities than that of group &lsquo / a&rsquo / catalysts. Catalyst Ib comes into prominence as the most active catalyst due to its superior characteristics that it possess such as highest extent of alloying with respect to the palladium amount used, active surface area, CO-tolerance, stability and Pt (0) to Pt (IV) and Pd (0) to Pd (II) ratios.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613008/index.pdf
Date01 February 2011
CreatorsOzturk, Zafer
ContributorsGokagac, Gulsun
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.002 seconds