One of the oldest goals across the science is to watch atoms undergo reactions in real time. However, such observations are only meaningful if the object of interest is looked at in its natural environment. For most biological and materials sciences samples, this means in solution phase or dispersed in a liquid. Unfortunately, this restriction normally prohibits either reaching atomic spatial (10-10m) or ultrafast time (10-15sec) resolution. Here, two sample preparation techniques are shown providing a natural environment for experiments with high spatial and temporal resolution: a nanofluidic cell for electron microscopy, and a chip for serial time resolved x-ray crystallography.
The nanofluidic cell was implemented into different transmission electron microscopes, and in initial experiments, the key features of the sample cell are shown, namely the ability to create stable ultrathin liquid layers of tuneable thickness within the harsh electron microscope vacuum. The option to directionally flow liquid through the sample cell opens the door to high throughput electron microscopy and on-the-fly sample exchanges with the option of triggering and influencing chemical reactions with external sample control. First applications highlight the impact of the nanocell: structural disintegration of gold nanorods exemplary for materials science, and amyloid fibrils, exemplary for biomedical applications. In future applications diffractive imaging with high time resolution is planned, and will complement the range of experiments within the fields of traditional transmission electron microscopy.
The second half of this thesis presents a solid target for x-ray crystallography. The chip enables the arrangement of thousands of micrometer sized protein crystals in a regular array. The ability to prepare protein crystals in such a fashion is unique and permits serial in situ crystallography. Real time crystallography requires samples to be mounted in a saturated natural environment, i.e. under ambient pressure and temperature conditions. The crystallography chip fills this need while being easily integrated into a synchrotron beam line. In a first set of experiments, the chip design was refined and could prove functionality for static in situ structure analysis of protein systems. Based on this success, future time resolved experiments are under way and will show the full capability of this device.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/65708 |
Date | 13 August 2014 |
Creators | Mueller, Christina |
Contributors | Miller, R.J. Dwayne |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0024 seconds