Return to search

Development of high efficiency dye sensitized solar cells : novel conducting oxides, tandem devices and flexible solar cells

Photovoltaic technologies use light from the sun to create electricity, using a wide range of materials and mechanisms. The generation of clean, renewable energy using this technology must become price competitive with conventional power generation if it is to succeed on a large scale. The field of photovoltaics can be split into many sub-groups, however the overall aim of each is to reduce the cost per watt of the produced electricity. One such solar cell which has potential to reduce the cost significantly is the dye sensitised solar cell (DSC), which utilises cheap materials and processing methods. The reduction in cost of the generated electricity is largely dependent on two parameters. Firstly, the efficiency that the solar cell can convert light into electricity and secondly, the cost to deposit the solar cell. This thesis aims to address both factors, specifically looking at altering the transparent conducting oxide (TCO) and substrate in the solar cell. One method to improve the overall conversion efficiency of the device is to implement the DSC as the top cell in a tandem structure, with a bottom infra-red absorbing solar cell. The top solar cell in such a structure must not needlessly absorb photons which the bottom solar cell can utilise, which can be the case in solar cells utilising standard transparent contacts such as fluorine-doped tin oxide. In this work, transparent conducting oxides with high mobility such as titanium-doped indium oxide (ITiO) have been used to successfully increase the amount of photons through a DSC, available for a bottom infra-red sensitive solar cell such as Cu(In,Ga)Se2 (CIGS). Although electrically and optically of very high quality, the production of DSCs on this material is difficult due to the heat and chemical instability of the film, as well as the poor adhesion of TiO2 on the ITiO surface. Deposition of a interfacial SnO2 layer and a post-deposition annealing treatment in vacuum aided the deposition process, and transparent DSCs of 7.4% have been fabricated. The deposition of a high quality TCO utilising cheap materials is another method to improve the cost/watt ratio. Aluminium-doped zinc oxide (AZO) is a TCO which offers very high optical and electronic quality, whilst avoiding the high cost of indium based TCOs. The chemical and thermal instability of AZO films though present a problem due to the processing steps used in DSC fabrication. Such films etch very easily in slightly acidic environments, and are susceptible to a loss of conductivity upon annealing in air, so some steps have to be taken to fabricate intact devices. In this work, thick layers of SnO2 have been used to reduce the amount of etching on the surface of the film, whilst careful control of the deposition parameters can produce AZO films of high stability. High efficiency devices close to 9% have been fabricated using these stacked layers. Finally, transferring solar cells from rigid to flexible substrates offers cost advantages, since the price of the glass substrate is a significant part of the final cost of the cell. Also, the savings associated with roll to roll deposition of solar cells is large since the production doesn't rely on a batch process, using heavy glass substrates, but a fast, continuous process. This work has explored using the high temperature stable polymer, polyimide, commonly used in CIGS and CdTe solar cells. AZO thin films have been deposited on 7.5um thick polyimide foils, and DSCs of efficiency over 4% have been fabricated on the substrates, using standard processing methods.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:554136
Date January 2011
CreatorsBowers, Jake
PublisherLoughborough University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://dspace.lboro.ac.uk/2134/9121

Page generated in 0.0022 seconds