The importance of sensing technologies in the field of transportation is ever increasing. Rapid improvements of cloud computing, Internet of Vehicles (IoV), and intelligent transport system (ITS) enables fast acquisition of sensor data with immediate processing. Machine learning algorithms provide a way to classify or predict outcomes in a selective and timely fashion. High accuracy and increased volatility are the main features of various learning algorithms. In this dissertation, we aim to use infrastructure- and vehicle-based sensors to improve safety and mobility of urban transportation systems. Smartphone sensors were used in the first study to estimate vehicle trajectory using lane change classification. It addresses the research gap in trajectory estimation since all previous studies focused on estimating trajectories at roadway segments only. Being a mobile application-based system, it can readily be used as on-board unit emulators in vehicles that have little or no connectivity. Secondly, smartphone sensors were also used to identify several transportation modes. While this has been studied extensively in the last decade, our method integrates a data augmentation method to overcome the class imbalance problem. Results show that using a balanced dataset improves the classification accuracy of transportation modes. Thirdly, infrastructure-based sensors like the loop detectors and video detectors were used to predict traffic signal states. This system can aid in resolving the complex signal retiming steps that is conventionally used to improve the performance of an intersection. The methodology was transferred to a different intersection where excellent results were achieved. Fourthly, magnetic vehicle detection system (MVDS) was used to generate traffic patterns in crash and non-crash events. Variational Autoencoder was used for the first time in this study as a data generation tool. The results related to sensitivity and specificity were improved by up to 8% as compared to other state-of-the-art data augmentation methods.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2139 |
Date | 01 January 2021 |
Creators | Islam, Zubayer |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations, 2020- |
Page generated in 0.0022 seconds