Thanks to the development in recent years, the placement of miniaturized sensors such as accelerometers, gyroscopes, magnetometers, global positioning system receivers (GPS), microphones or others to commercially sold smartphones is increasing. Use of these sensors (which are to be found in the smartphone) for human activity recognition with health care improvement in mind is a discussed theme. Advantages of the use of smartphone for human movement monitoring lies in the fact that it is a device that the person measured carries with them and there are no additional costs. The disadvantages are a limited storage and battery. Therefore, only accelerometer, gyroscope, magnetometer, and microphone were chosen because their combination achieves best results. GPS sensor was excluded for its lack of reliability in sampling and for being energy demanding. Features were computed from the measured data and used for learning of the classification model. The highest accuracy was achieved with the use of a machine learning method called Random Forest. The main goal of this work was to create an algorithm for transportation mode recognition using signals sensed by a smartphone. The created algorithm succeeds in classification of walk, car, bus, tram, train, and bike in 97.4 % with 20 % holdout validation. When tested on a new set of data from the tenth volunteer, the resulting accuracy counted as average form classification recall for each transportation mode reached 90.49 %.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:378025 |
Date | January 2018 |
Creators | Nevěčná, Leona |
Contributors | Vítek, Martin, Smíšek, Radovan |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.003 seconds