Osteoarthritis (OA) is a debilitating disease affecting roughly 31 million Americans. The incidence of OA is significantly higher for persons who have suffered a transtibial amputation. Abnormal cartilage stress can cause higher OA risk, however it is unknown if there is a connection between exercise type and cartilage stress. To help answer this, a tibiofemoral FEA model was created. Utilizing linear elastic isotropic materials and non-linear springs, the model was validated to experimental cadaveric data. In a previous study, 6 control and 6 amputee subjects underwent gait and cycling experiments. The resultant knee loads were analyzed to find the maximum compressive load and the respective shear forces and rotation moments for each trial, which were then applied to the model. Maximum tibial contact stress values were extracted for both the medial and lateral compartments. Only exercise choice in the lateral compartment was found to be a significant interaction (p<0.0001). No other interactions in either compartment were significant. This suggests that cycling reduces the risk for lateral OA regardless of amputation status and medial OA risk is unaffected. This study also developed a process for creating subject-specific FEA models.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3166 |
Date | 01 June 2018 |
Creators | Lane, Gregory |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0015 seconds