Return to search

Emittance minimization at the ELBE superconducting electron gun

The transverse emittance is one of the most important quantities which characterize the quality of an electron source. For high quality experiments low beam emittance is required. By means of theoretical considerations and simulation calculations we have studied how the emittance of the Rossendorf superconducting radio-frequency photoelectron source (SRF gun) can be minimized. It turned out that neither a solenoid magnet nor the effect of space charge forces is needed to create a pronounced emittance minimum. The minimum appears by just adjusting the starting phase of the electron bunch with respect to the RF phase of the gun in a suitable way. Investigation of various correlations between the properties of the beam particles led to an explanation on how the minimum comes about. It is shown that the basic mechanism of minimization is the fact that the longitudinal properties of the particles (energy) are strongly influenced by the starting phase. Due to the coupling of the longitudinal and transverse degrees of freedom by the relativistic equation of motion the transverse degrees of freedom and thereby the emittance can be strongly influenced by the starting phase as well. The results obtained in this study will be applied to minimize the emittance in the commissioning phase of the SRF gun.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:d120-qucosa-146950
Date26 June 2014
CreatorsMöller, K., Arnold, A., Lu, P., Murcek, P., Teichert, J., Vennekate, H., Xiang, R.
ContributorsHelmholtz-Zentrum Dresden-Rossendorf,
PublisherForschungszentrum Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:report
Formatapplication/pdf
Relationdcterms:isPartOf:Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-050 2014

Page generated in 0.0019 seconds