Return to search

Influence of Peripheral Immune-Derived EphA4 on Microglial Dynamics Following Traumatic Brain Injury

Traumatic brain injury (TBI) elicits an immediate neuroinflammatory response that involves resident glia and infiltrating peripheral immune cells that coordinate tissue damage and functional deficits. The activation of resident microglial has been associated with a change in their morphology from a branched-like ramified cell to an ameboid state. This activation is thought to initiate a pro-inflammatory response leading to the release of neurotoxic, immune chemoattractant, and antigen-presenting signals. Subsequently, peripheral-derived immune cells (PICs), such as neutrophils and monocytes, travel to the site of injury and help coordinate this response. However, little is known regarding whether PICs influence the progressive activation state of microglia in the acute and chronic phases of injury. Overactivation of microglia can lead to neuroinflammation-mediated tissue damage and death or dysfunction of healthy neurons. Therefore, understanding how microenvironmental cues may regulate the microglial response may aid in strategies to retool their activation state in the brain. EphA4 receptor tyrosine kinase has been identified as a potential cell-to-cell contact protein on PICs that could be involved in the inflammatory changes following TBI. While microglial activation changes have been described in TBI models, the mechanistic role of infiltrating peripheral-derived immune cell (PIC) recruitment on microglial fate and function is not well understood. The purpose of my project is to gain a better understating of the temporospatial influence that EphA4-expressing PICs, specifically monocyte/macrophages, have on microglial proliferation, survival, activation phenotype, and debris clean-up using bone marrow GFP chimeric mice and the cortical contusion injury TBI model. / Doctor of Philosophy / Traumatic brain injury (TBI) triggers an immediate response from the brain's immune system, involving both local glial cells and immune cells from outside the brain. These cells work together to mediate the initial injury but, in some cases, cause development of a secondary injury. Microglia, the brain's resident immune cell, change their shape and behavior when activated by a TBI, becoming more aggressive and releasing inflammatory proteins. At the same time, immune cells from the bloodstream, like neutrophils and monocytes, rush to the injury site to assist. Yet, it's unclear how these immune cells affect microglia over time during the injury's acute and chronic phases. If microglia become too active, they can cause further damage to brain tissue and harm healthy neurons. Therefore, understanding the signals that control microglial activity could help us develop therapies to manage brain inflammation. One protein of interest in this process is the EphA4 receptor found on immune cells, which might play a crucial role in inflammation following TBI. While we know that microglia change post-TBI, we don't fully understand how the recruitment of immune cells from outside the brain affects them. My research aims to clarify how EphA4-expressing immune cells, especially monocytes/macrophages, influence microglia in terms of growth, behavior, and their ability to mediate a TBI.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/120786
Date30 July 2024
CreatorsMills, Jatia
ContributorsBiomedical and Veterinary Sciences, Theus, Michelle Hedrick, Olsen, Michelle Lynne, Jarome, Timothy, Li, Liwu
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds