Les surfaces texturées sont devenues, ces dernières années, des substrats de choix pour de nombreuses applications. En effet, la texturation des surfaces, de l'échelle nanométrique à l'échelle microscopique, permet d'accroître les propriétés d'adhérence ou de renforcer la résistance mécanique intrinsèque. Dans ce travail de thèse nous proposons une étude sur l'influence des textures chimiques sur le comportement tribologique, adhésif et sur la mouillabilité des substrats. Dans le premier chapitre, on propose une stratégie de micro-texturation des surfaces basées sur la technique de microcontact-printing et le greffage de chaînes de polymères de géométries/formes contrôlées. En outre, on a notamment étudié de manière approfondie la mouillabilité des surfaces texturées afin de comprendre les effets de diminution de taille des textures sur le comportement adhésif. Dans les expériences d'adhésion et frottement, un dispositif de type JKR (pour Johnson, Kendall et Roberts), une machine de frottement et une FFM ont été utilisés permettant d'observer le contact entre une sphère élastique et une pointe rigide avec un plan texturé tout en contrôlant la force entre les surfaces. En outre l'utilisation de ces différentes approches ne nous a pas finalement donné des explications satisfaisantes sur les mécanismes agissant sur les phénomènes interfaciaux. De ce fait, l'utilisation du démouillage de films minces de PS et de PDMS sur des surfaces texturées nous as permis de suivre l'évolution de l'instabilité du bourrelet à l'interface. Enfin, dans le dernier chapitre, nous avons étudier les différents aspects prédominants des phénomènes interfaciaux sur des surfaces homogènes / Micro and Nanoscale surface patterns are considered as potential templates and building blocks for Micro/nanotechnology. As for materials in general, these micro /nano-scale surface structures have been of increasing research interest in recent years, due to their unique properties. They are expected to exhibit novel and significantly improved physical, chemical, mechanical and other properties, as well as to offer opportunities for manifestation of new phenomena and processes. In the present PhD work, we propose a multiple scale analysis of the adhesion, friction and wetting behaviors for different patterned interfaces. In a first chapter, we developed a general methodology to design well-defined surfaces combining micro-contact printing (µCP), self-assembled monolayers (SAMs) and polymer grafting techniques. Then we study the wettability of a patterned solid surface. Where, the stick-slip regime, and the effect of the patterning at the mesoscale was investigated. Furthermore, we concentrate on the dependence of adhesion and friction between a polymer and a rigid tip on the composition of the patterned substrates using a JKR, FFM and friction machines. Intriguingly, the uses of these approaches did not provide us with a clear answer to our bewilderment. Therefore, in the third chapter, we adopted the approach of the dewetting of thin polymer film on top of patterned surfaces. We study the impact of the solid/liquid boundary condition on the evolution of the rim instability during the course of dewetting. The last chapter details the investigation of the predominant aspect between the chemistry introduced on the surface and the mechanical proprieties of the substrate
Identifer | oai:union.ndltd.org:theses.fr/2017LYSE1250 |
Date | 28 November 2017 |
Creators | Ben Ali, Imed Eddine |
Contributors | Lyon, Cassagnau, Philippe, Al Akhrass, Samer |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds