The kiln drying of wood produces huge amounts of vapour. The vapour is released to the environment when the process purges some of the saturated hot air. The main environmental issue regarding the use of kiln drying process are the release of the water vapour which contains organic contaminants. Some of them are hazardous to human health. In addition, there are some wood particles which may released with the water vapour purging process.
In this research, the vapour is condensed and analysed for its organic contaminants and their biodegradability. The result showed that the dominant contaminants present in the condensate were ethanol and methanol with the concentration of approximately 65 mg/L and 25 mg/L respectively. The average COD concentration of the condensate was 159 ± 40 mg/L. The analysis also showed that the contaminants were biodegradable.
In order to treat the wastewater, a trickling filter process using bark chips as a support medium was used to treat an artificial wastewater. The artificial wastewater contained the dominant contaminant present in the wood drying condensate. In the experiment, different sizes of bark chips were used. In addition, the loading rate of the treatment system was varied by changing the flow rate and contaminant concentration.
The 30 cm long trickling filter using bark chips varying between of 2.8 – 4 mm diameter as the support medium gave a maximum removal of 36.4 % with removal capacity of 8.34 kg COD/m³bed•day at a flow rate of 2.8 cm/min and average inlet COD load of 20.4 kg COD/m3bed•day. The trickling filter with bark chips varying between 5.6 – 8 mm diameter as the support medium was operated using variations in contaminant concentration and flow rate. The operation using different inlet concentration gave the highest removal rate of 13.5 kg COD/m3bed•day at average initial load of 84.9 kg COD/m³bed•day, flow rate of 2.8 cm/min and theoretical initial concentration of 680 mg/L. The trickling filter operated with flow rate variation showed the highest removal rate of 10 kg COD/m³bed•day at an average inlet load of 53.3 kg COD/m³bed•day and flow rate of 7.1 cm/min.
The removal rate of the contaminants in treatment was limited. There is a number of possible explanations. First is the active surface area, which indicating the area where the contact between the biofilm surface and feed happened. The active surface area increased as the flow rate increased. Second is the residence time of the feed in the bed. The residence time of the feed varied with the flow rate. It decreased as the flow rate increased. Third is the influence of the contaminants in the feed. The presence of methanol and methanol in the feed inhibited each other’s degradation.
The dimention of a full-scale biotrickling filter to be used in actual kiln was also estimated. The estimation was made based on the maximum removal rate and optimum flow rate obtained in the experiments. The result of the estimation showed to obtain significant removal, the required bed would have to be 2.35 m in diameter and 160 in height.
Identifer | oai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/3555 |
Date | January 2009 |
Creators | Kristiono, Arie |
Publisher | University of Canterbury. Chemical and Process Engineering |
Source Sets | University of Canterbury |
Language | English |
Detected Language | English |
Type | Electronic thesis or dissertation, Text |
Rights | Copyright Arie Kristiono, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml |
Relation | NZCU |
Page generated in 0.0032 seconds