在計算矩陣的特徵值(eigenvalues)中,QR演算法是一種常見的技巧. 尤其如果使用適當的移位,將可以較快得到特徵值. 在本文中提出一種新的移位策略, 我們證明這各方法是可行的,而且可適用於任何矩陣. 換句說, 本篇論文主旨即是提出有關新的移位QR演算法的收斂. / The QR algorithm is a popular method for computing all the
eigenvalues of a dense matrix. If we use a proper shift, we can
accelerate convergence of the iterative process. Hence, we design a new shift strategy which includes an eigenvalue of the trailing principal 3-by-3 submatrix of the tridiagonal matrix. We prove the global convergence of the new strategy. In other words, the purpose of this thesis is to propose a theory of the convergence of a new shifted QR algorithm.
Identifer | oai:union.ndltd.org:CHENGCHI/G0090751008 |
Creators | 蔡淑芬, Tsai ,Shu-Fen |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 英文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0012 seconds